US11055728B2 - Methods and systems for determining a risk of an emotional response of an audience - Google Patents
Methods and systems for determining a risk of an emotional response of an audience Download PDFInfo
- Publication number
- US11055728B2 US11055728B2 US16/724,950 US201916724950A US11055728B2 US 11055728 B2 US11055728 B2 US 11055728B2 US 201916724950 A US201916724950 A US 201916724950A US 11055728 B2 US11055728 B2 US 11055728B2
- Authority
- US
- United States
- Prior art keywords
- computing device
- risk
- publication
- geographic region
- prototype
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000006397 emotional response Effects 0.000 title claims abstract description 87
- 238000000034 method Methods 0.000 title claims abstract description 48
- 238000003860 storage Methods 0.000 claims abstract description 24
- 239000013598 vector Substances 0.000 claims description 193
- 238000012360 testing method Methods 0.000 claims description 62
- 238000004891 communication Methods 0.000 claims description 13
- 230000008859 change Effects 0.000 claims description 8
- 238000009826 distribution Methods 0.000 claims description 7
- 238000000513 principal component analysis Methods 0.000 claims description 6
- 230000002452 interceptive effect Effects 0.000 claims 3
- 230000000007 visual effect Effects 0.000 claims 3
- 238000010586 diagram Methods 0.000 description 18
- 230000008569 process Effects 0.000 description 13
- 238000004590 computer program Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 230000008447 perception Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000006399 behavior Effects 0.000 description 2
- 230000003542 behavioural effect Effects 0.000 description 2
- 230000002996 emotional effect Effects 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0201—Market modelling; Market analysis; Collecting market data
Definitions
- This invention relates generally to determining a risk of an emotional response, and more specifically to analyzing a publication and determining a risk of an emotional response to the publication by a particular audience.
- detecting the emotional response occurs after the audience in question has already begun to take action, for example by generating a responsive publication, protesting, purchasing a particular item, or refraining from purchasing a particular item.
- a risk of an emotional response is not detected or measured before the audience takes action. Accordingly, any opportunity to take corrective measures to mitigate a risk of the emotional response has passed by the time the emotional response is detected.
- a method for determining a risk of an emotional response of an audience to at least one publication is provided.
- the method is implemented by a computing device in communication with a database.
- the method includes receiving, by a computing device, the at least one publication.
- the method also includes retrieving, by the computing device from the database, a set of prototype vectors, wherein each prototype vector is associated with a risk factor that influences a risk of an emotional response of the audience and includes least one word.
- the method includes generating, by the computing device, a test vector corresponding to each prototype vector, wherein each test vector includes each word in the corresponding prototype vector that also appears in the at least one publication.
- the method also includes determining, by the computing device, a magnitude of each risk factor by comparing each test vector to the corresponding prototype vector. Additionally, the method includes retrieving, by the computing device from the database, a model for weighting and summing the magnitudes of the risk factors. Further, the method includes determining a risk of an emotional response of the audience by weighting and summing the magnitudes of the risk factors according to the retrieved model.
- a computing device for determining a risk of an emotional response of an audience to at least one publication.
- the computing device is communicatively coupled to a database.
- the computing device is configured to receive the at least one publication.
- the computing device is further configured to retrieve, from the database, a set of prototype vectors, wherein each prototype vector is associated with a risk factor that influences a risk of an emotional response of the audience and includes least one word.
- the computing device is further configured to generate a test vector corresponding to each prototype vector, wherein each test vector includes each word in the corresponding prototype vector that also appears in the at least one publication. Additionally, the computing device is configured to determine a magnitude of each risk factor by comparing each test vector to the corresponding prototype vector.
- the computing device is configured to retrieve, from the database, a model for weighting and summing the magnitudes of the risk factors and determine a risk of an emotional response of the audience by weighting and summing the magnitudes of the risk factors according to the retrieved model.
- a computer-readable storage device having processor-executable instructions embodied thereon.
- the processor-executable instructions are for determining a risk of an emotional response of an audience to at least one publication.
- the processor-executable instructions When executed by a computing device communicatively coupled to a database, the processor-executable instructions cause the computing device to receive the at least one publication.
- the instructions further cause the computing device to retrieve, from the database, a set of prototype vectors, wherein each prototype vector is associated with a risk factor that influences a risk of an emotional response of the audience and includes least one word.
- the instructions additionally cause the computing device to generate a test vector corresponding to each prototype vector, wherein each test vector includes each word in the corresponding prototype vector that also appears in the at least one publication.
- the instructions cause the computing device to determine a magnitude of each risk factor by comparing each test vector to the corresponding prototype vector. Additionally, the instructions cause the computing device to retrieve, from the database, a model for weighting and summing the magnitudes of the risk factors, and determine a risk of an emotional response of the audience by weighting and summing the magnitudes of the risk factors according to the retrieved model.
- FIG. 1 is a schematic diagram illustrating an example environment in which publishers disseminate publications to audiences regarding issues.
- FIG. 2 is a simplified block diagram of a risk determination system including a plurality of computing devices in accordance with one example embodiment of the present disclosure.
- FIG. 3 is an expanded block diagram of a server architecture of the risk determination system, including the plurality of computing devices, in accordance with one example embodiment of the present disclosure.
- FIG. 4 illustrates an example configuration of a client system shown in FIGS. 2 and 3 .
- FIG. 5 illustrates an example configuration of a server system shown in FIGS. 2 and 3 .
- FIG. 6 is a block diagram of an example risk factor set and a prototype vector set for a first audience.
- FIG. 7 is a block diagram of an example relationship between a first publication, a test vector set generated from the first publication, a prototype vector set, and determined magnitudes of risk factors.
- FIG. 8 is a block diagram of an example relationship between a weighting model associated with a first audience, principal components of the weighting model, and weights applied to risk factor magnitudes for each principal component.
- FIG. 9 is an example plot of a determined risk associated with a first issue for a first audience.
- FIG. 10 is a block diagram showing an example relationship between a first audience, a first prototype vector set and a first weighting model, and a second audience, a second prototype vector set and a second weighting model.
- FIG. 11 is an example plot of determined risks associated with a first issue and a second issue for a second audience.
- FIG. 12 is an example plot of determined risks associated with a first issue, based on publications from a first publisher and a second publisher, for a first audience.
- FIG. 13 is a flowchart of an example process that may be performed by a computing device of the risk determination system to determine a risk of an emotional response of an audience to at least one publication.
- FIG. 14 is a diagram of components of one or more example computing devices that may be used in the risk determination system shown in FIGS. 1-3 .
- Embodiments of a methods and systems described herein provide early signs that a particular audience may respond emotionally to one or more publications relating to one or more issues.
- An emotional response may be, for example, generating and distributing a responsive publication, protesting, purchasing a particular item, or refraining from purchasing a particular item.
- the methods and systems described herein facilitate determining how a particular issue or publication may affect one category of audience over another category of audience.
- the methods and systems may reveal communication strategies from one or more publishers and systematic attempts to elicit an emotional response from an audience.
- the systems and methods herein allow a user to know about a risk of an emotional response from an audience before the emotional response occurs, and take action to reduce the risk of the emotional response.
- the methods and systems described herein may be implemented using computer programming or engineering techniques including computer software, firmware, hardware or any combination or subset thereof, wherein the technical effect may include at least one of: (a) receiving, by the computing device, the at least one publication; (b) retrieving, by the computing device from the database, a set of prototype vectors, wherein each prototype vector is associated with a risk factor that influences a risk of an emotional response of the audience and includes least one word; (c) generating, by the computing device, a test vector corresponding to each prototype vector, wherein each test vector includes each word in the corresponding prototype vector that also appears in the at least one publication; (d) determining, by the computing device, a magnitude of each risk factor by comparing each test vector to the corresponding prototype vector; and (e) retrieving, by the computing device from the database, a model for weighting and summing the magnitudes of the risk factors; and (f) determining a risk of an emotional response of the audience by weighting and summing the magnitudes of the risk factors according to the
- a computer program is provided, and the program is embodied on a computer-readable medium.
- the system is executed on a single computer system, without requiring a connection to a sever computer.
- the system is being run in a Windows® environment (Windows is a registered trademark of Microsoft Corporation, Redmond, Wash.).
- the system is run on a mainframe environment and a UNIX® server environment (UNIX is a registered trademark of AT&T located in New York, N.Y.).
- the application is flexible and designed to run in various different environments without compromising any major functionality.
- the system includes multiple components distributed among a plurality of computing devices.
- One or more components may be in the form of computer-executable instructions embodied in a computer-readable medium.
- the systems and processes are not limited to the specific embodiments described herein.
- components of each system and each process can be practiced independent and separate from other components and processes described herein.
- Each component and process can also be used in combination with other assembly packages and processes.
- the disclosure has general application to determining a risk of an emotional response of an audience to at least one publication.
- FIG. 1 is a schematic diagram illustrating an example environment 100 in which publishers disseminate publications to audiences regarding issues and in which a risk determination system 116 may operate. More specifically, a first publisher 104 , a second publisher 106 , and a third publisher 108 each disseminate publications 110 regarding a first issue 102 and a second issue 103 . Publications 110 are received by a first audience 112 and a second audience 114 . Additionally, publications 110 are received by risk determination system 116 . Publications 110 may be, for example, news items, articles, opinions, blog entries, social media messages or postings, or other communications disseminated as text, images, video, audio, or any combination thereof.
- first issue 102 may be portrayed in differing manners, for example by word choice in publications 110 disseminated by the publisher 104 , 106 , 108 . Accordingly, publications 110 disseminated by first publisher 104 , regarding first issue 102 , and received by first audience 112 may have a higher risk of causing an emotional response in audience 112 than do publications 110 disseminated by second publisher 104 regarding first issue 102 .
- first audience 112 and second audience 114 may perceive the same publication 110 differently, due to circumstances or characteristics associated with each audience 112 and 114 . More specifically, first audience 112 may fall within a first age range, have a first culture, have a first religion, be of a first gender, fall within a first income range, and/or be located in a first geographic region, whereas second audience 114 may fall within a second age range, have a second culture, have a second religion, be of a second gender, fall within a second income range, and/or be located in a second geographic region, wherein one or more of the above characteristics or circumstances differs from that of first audience 112 . Accordingly, first audience 112 may be considered to fall within a first category and second audience 114 may be considered to fall within a second category.
- first audience 112 may have a higher risk of an emotional response than second audience 114 to one or more publications regarding first issue 102 , which may be, for example, age discrimination for the age range of first audience 112 .
- second audience 114 may have a higher emotional response risk than first audience to one or more publications 110 pertaining to second issue 103 , which may be police brutality in a geographic region where second audience is located.
- Risk determination system 116 receives publications 110 and determines the risks of emotional response from first audience 112 , second audience 114 , and/or other audiences to one or more of publications 110 regarding one or more of first issue 102 , second issue 103 , and/or other issues.
- FIG. 2 is a simplified block diagram of a risk determination system including a plurality of computing devices in accordance with one example embodiment of the present disclosure.
- system 116 includes a server system 202 and a plurality of client subsystems, also referred to as client systems 204 or client computing devices, connected to server system 202 .
- client systems 204 are computers including a web browser, such that server system 202 is accessible to client systems 204 using the Internet.
- Client systems 204 are interconnected to the Internet through many interfaces including a network, such as a local area network (LAN) and/or a wide area network (WAN), dial-in connections, cable modems, wireless-connections, and special high-speed ISDN lines.
- LAN local area network
- WAN wide area network
- Client systems 204 may be any device capable of interconnecting to the Internet including a web-based phone, personal digital assistant (PDA), or other web-connectable equipment.
- a database server 206 is connected to a database 208 containing information on a variety of matters, as described below in greater detail.
- database 208 is stored on server system 202 and may be accessed by potential users at one of client systems 204 by logging onto server system 202 through one of client systems 204 .
- database 208 is stored remotely from server system 202 and may be non-centralized.
- Server system 202 could be any type of computing device configured to perform the steps described herein.
- publications 110 risk factors, prototype vectors associated with different audiences, and weighting models associated with different audiences, are stored within database 208 .
- FIG. 3 is an expanded block diagram of a server architecture of risk determination system 116 in accordance with one embodiment of the present disclosure.
- Risk determination system 116 includes server system 202 and client systems 204 .
- Server system 202 further includes database server 206 , an application server 302 , a web server 304 , a fax server 306 , a directory server 308 , and a mail server 310 .
- a disk storage unit 312 is coupled to database server 206 and directory server 308 .
- Servers 206 , 302 , 304 , 306 , 308 , and 310 are coupled in a local area network (LAN) 314 .
- LAN local area network
- a system administrator's workstation 316 a user workstation 318 , and a supervisor's workstation 320 are coupled to LAN 314 .
- workstations 316 , 318 , and 320 are coupled to LAN 314 using an Internet link or are connected through an Intranet.
- Each workstation, 316 , 318 , and 320 is a personal computer having a web browser. Although the functions performed at the workstations typically are illustrated as being performed at respective workstations 316 , 318 , and 320 , such functions can be performed at one of many personal computers coupled to LAN 314 . Workstations 316 , 318 , and 320 are illustrated as being associated with separate functions only to facilitate an understanding of the different types of functions that can be performed by individuals having access to LAN 314 .
- Server system 202 is configured to be communicatively coupled to various entities, including aggregators 322 , using an Internet connection 326 .
- Aggregators 322 may receive and aggregate publications 110 from publishers, for example first publisher 104 , second publisher 106 , and third publisher 108 . Additionally, aggregators 322 may convert publications 110 from one format to another, for example converting a physical publication to an electronic format and/or converting images, video, and/or audio to text. Additionally, aggregators 322 may perform language identification and/or language translation. Aggregators 322 may transmit publications 110 to server system 202 for storage in database 208 . In other embodiments, server system 202 directly performs one or more of the functions of aggregators 322 described above.
- the communication in the example embodiment is illustrated as being performed using the Internet, however, any other wide area network (WAN) type communication can be utilized in other embodiments, i.e., the systems and processes are not limited to being practiced using the Internet.
- WAN wide area network
- local area network 314 could be used in place of WAN 328 .
- any authorized individual or entity having a workstation 330 may access system 300 .
- At least one of the client systems includes a manager workstation 332 located at a remote location.
- Workstations 330 and 332 include personal computers having a web browser.
- workstations 330 and 332 are configured to communicate with server system 202 .
- fax server 306 communicates with remotely located client systems, including a client system 332 , using a telephone link. Fax server 306 is configured to communicate with other client systems 316 , 318 , and 320 as well.
- FIG. 4 illustrates an example configuration of a client system (“client computing device”) shown in FIGS. 2 and 3 .
- Client computing device 402 may include, but is not limited to, client computing devices 204 , 316 , 318 , and 320 , workstation 330 , and manager workstation 332 (shown in FIG. 3 ).
- Client computing device 402 includes a processor 405 for executing instructions.
- executable instructions are stored in a memory area 410 .
- Processor 405 may include one or more processing units (e.g., in a multi-core configuration).
- Memory area 410 is any device allowing information such as executable instructions and/or other data to be stored and retrieved.
- Memory area 410 may include one or more computer-readable media.
- Client computing device 402 also includes at least one media output component 415 for presenting information to user 401 .
- Media output component 415 is any component capable of conveying information to user 401 .
- media output component 415 includes an output adapter such as a video adapter and/or an audio adapter.
- An output adapter is operatively coupled to processor 405 and operatively couplable to an output device such as a display device (e.g., a liquid crystal display (LCD), organic light emitting diode (OLED) display, cathode ray tube (CRT), or “electronic ink” display) or an audio output device (e.g., a speaker or headphones).
- a display device e.g., a liquid crystal display (LCD), organic light emitting diode (OLED) display, cathode ray tube (CRT), or “electronic ink” display
- an audio output device e.g., a speaker or headphones.
- client computing device 402 includes an input device 420 for receiving input from user 401 .
- Input device 420 may include, for example, a keyboard, a pointing device, a mouse, a stylus, a touch sensitive panel (e.g., a touch pad or a touch screen), a gyroscope, an accelerometer, a position detector, or an audio input device.
- a single component such as a touch screen may function as both an output device of media output component 415 and input device 420 .
- Client computing device 402 may also include a communication interface 425 , which is communicatively couplable to a remote device such as server system 202 .
- Communication interface 425 may include, for example, a wired or wireless network adapter or a wireless data transceiver for use with a mobile phone network (e.g., Global System for Mobile communications (GSM), 3G, 4G or Bluetooth) or other mobile data network (e.g., Worldwide Interoperability for Microwave Access (WIMAX)).
- GSM Global System for Mobile communications
- 3G, 4G or Bluetooth Wireless Fidelity
- WIMAX Worldwide Interoperability for Microwave Access
- Stored in memory area 410 are, for example, computer-readable instructions for providing a user interface to user 401 via media output component 415 and, optionally, receiving and processing input from input device 420 .
- a user interface may include, among other possibilities, a web browser and client application. Web browsers enable users, such as user 401 , to display and interact with media and other information typically embedded on a web page or a website from server system 202 .
- a client application allows user 401 to interact with a server application from server system 202 .
- FIG. 5 illustrates an example configuration of a server computing device 575 such as server system 202 (shown in FIGS. 2 and 3 ).
- Server computing device 575 may include, but is not limited to, database server 206 , application server 302 , web server 304 , fax server 306 , directory server 308 , and mail server 310 .
- Server computing device 575 includes a processor 580 for executing instructions. Instructions may be stored in a memory area 585 , for example.
- Processor 580 may include one or more processing units (e.g., in a multi-core configuration).
- Processor 580 is operatively coupled to a communication interface 590 such that server computing device 575 is capable of communicating with a remote device such as client computing device 402 or another server computing device 575 .
- communication interface 590 may receive requests from client computing devices 204 via the Internet, as illustrated in FIGS. 2 and 3 .
- Storage device 512 is any computer-operated hardware suitable for storing and/or retrieving data.
- storage device 512 is integrated in server computing device 575 .
- server computing device 575 may include one or more hard disk drives as storage device 512 .
- storage device 512 is external to server computing device 575 and may be accessed by a plurality of server computing devices 575 .
- storage device 512 may include multiple storage units such as hard disks or solid state disks in a redundant array of inexpensive disks (RAID) configuration.
- Storage device 512 may include a storage area network (SAN) and/or a network attached storage (NAS) system.
- SAN storage area network
- NAS network attached storage
- processor 580 is operatively coupled to storage device 512 via a storage interface 595 .
- Storage interface 595 is any component capable of providing processor 580 with access to storage device 512 .
- Storage interface 595 may include, for example, an Advanced Technology Attachment (ATA) adapter, a Serial ATA (SATA) adapter, a Small Computer System Interface (SCSI) adapter, a RAID controller, a SAN adapter, a network adapter, and/or any component providing processor 580 with access to storage device 512 .
- ATA Advanced Technology Attachment
- SATA Serial ATA
- SCSI Small Computer System Interface
- Memory areas 410 and 585 may include, but are not limited to, random access memory (RAM) such as dynamic RAM (DRAM) or static RAM (SRAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), and non-volatile RAM (NVRAM).
- RAM random access memory
- DRAM dynamic RAM
- SRAM static RAM
- ROM read-only memory
- EPROM erasable programmable read-only memory
- EEPROM electrically erasable programmable read-only memory
- NVRAM non-volatile RAM
- FIG. 6 is a block diagram 600 of an example risk factor set 602 and a prototype vector set 608 corresponding to risk factor set 602 for first audience 112 .
- Risk factor set 602 is a set of distinct psychological characteristics (“risk factors”) found by researchers to influence an overall perception of risk, attitudes, and behavior of an audience, for example first audience 112 .
- Risk factor set 602 includes a first risk factor 604 and a last risk factor 606 .
- risk factor set 602 may include 14 risk factors.
- First risk factor 604 may be, for example, “catastrophic potential”, corresponding to the degree to which an issue can negatively affect large populations or occur frequently over time.
- Last risk factor 606 may be, for example, “vulnerability”, corresponding to the degree to which victims of an issue are members of vulnerable populations versus populations with resources to protect themselves.
- a set of documents identified as being relevant to each risk factor, as well as a set of documents identified as having no relevance to each risk factor, are stored in electronic format in database 208 .
- Server system 202 executes a query for each of the risk factors and returns conceptually similar records (e.g., documents).
- Server system 202 selects a predetermined number of the returned documents, for example 500 of the returned documents, with the strongest mathematical similarity to the initial set of documents (i.e., the documents identified as being relevant to each risk factor), thereby generating a plurality of document sets.
- server system 202 lexically analyzes occurrences and distributions of words, thereby generating a lexicon associated with each risk factor.
- server system 202 compares each of the generated lexicons to the documents identified as having no relevance to each risk factor, and to each of the other generated lexicons. For each word in each lexicon, server system 202 assigns a normalized frequency of occurrences to the word. The lexical analysis and assigning of normalized frequency to each word, as described above, results in a prototype vector set 608 .
- Prototype vector set 608 includes a first prototype vector 610 and a last prototype vector 612 .
- prototype vector set 608 may include 14 prototype vectors.
- Each prototype vector for example first prototype vector 610 , includes a word set 611 , including a first word 614 and a last word 616 .
- Each word in word set 611 is weighted at least by its normalized frequency, described above. In some embodiments, each word in word set 611 is also weighted by its relevance to the corresponding risk factor.
- Each prototype vector, for example first prototype vector 610 may be considered a “perfect” lexical representation of the corresponding risk factor, for example first risk factor 604 .
- first prototype vector 610 which corresponds to first risk factor 604 , may include words such as “catastrophe”, “devastation”, and/or “ruin”.
- Last prototype vector 612 corresponding last risk factor 606 , may include a word set 613 having a first word 618 , for example “affair”, and a last word 620 , for example “elder”.
- Server system 202 may store and retrieve from database 208 risk factors and prototype vectors generated according to the description above. Additionally, server system 202 may store and retrieve risk factors and prototype vectors in database 208 according to categories of audiences.
- a prototype vector such as prototype vector 610
- ASCII file a text file
- a first column includes each word in the corresponding word set 611
- a second column includes the normalized frequency of each word
- a third column includes a weight assigned to each word.
- FIG. 7 is a block diagram 700 of an example relationship between a first publication 110 , a test vector set 702 generated from the first publication 110 , prototype vector set 608 , and a determined magnitude set 708 corresponding to risk factor set 602 ( FIG. 6 ).
- publications 110 for example first publication 110
- server system 202 the full text of each publication, for example first publication 110 , is indexed by server system 202 to identify any and all words in prototype vector set 608 .
- server system 202 generates test vector set 702 which includes a test vector, for example first test vector 704 and last test vector 706 , corresponding to each risk factor in risk factor set 602 .
- Each test vector for example first test vector 704 , includes a set of words in first publication 110 that are also in the prototype vector (e.g., first prototype vector 610 ), associated with the risk factor (e.g., first risk factor 604 ( FIG. 6 )).
- Server system 202 additionally stores, in test vector 704 , a number of occurrences of each word. Any occurrences of synonyms are counted as occurrences of the word as well. Additionally, server system 202 multiplies the number of occurrences associated with each word in first test vector 704 with the weight assigned to the word in the corresponding prototype vector (e.g., first prototype vector 610 ).
- Server system 202 compares each test vector in test vector set 702 to the corresponding prototype vector in prototype vector set 608 , thereby determining a presence and/or magnitude of each of the risk factors associated with first publication 110 .
- server system 202 mathematically compares each test vector (e.g., first test vector 704 ) with the corresponding prototype vector (e.g., first prototype vector 610 ) to determine the presence and/or magnitude of the corresponding risk factor (e.g., example first risk factor 604 ( FIG. 6 )). For example, a mathematically determined high similarity (low distance) between the words in first test vector 704 and first prototype vector 610 indicates that first risk factor 604 is present and has a relatively high magnitude in first publication 110 .
- server system 202 counts the words in each test vector to determine the magnitude of the corresponding risk factor. In some embodiments, a magnitude of zero represents an absence (i.e., no presence) of the corresponding risk factor. Server system 202 may store and retrieve from database 208 risk factor magnitudes determined according to the description above.
- the correlation between each test vector and its corresponding prototype vector is calculated using a Pearson correlation coefficient, which is defined in Equation 1.
- Equation 1 x represents the prototype vector and y represents the test vector.
- the resulting value is a relative measure reflecting the degree to which a specific risk factor is present in a publication (e.g., first publication 110 ) and ranges from ⁇ 1 to 1, where values closer to 1 represent a stronger correlation between the test vector and the corresponding prototype vector, and lower values represent a weaker correlation.
- FIG. 8 is a block diagram 800 of an example relationship between a weighting model 802 associated with first audience 112 , a first principal component 804 and a second principal component 805 of weighting model 802 .
- Block diagram 800 also shows a relationship between first principal component 804 and a first weight set 806 .
- block diagram 800 shows a relationship between second principal component 805 and a second weight set 812 .
- First weight set 806 represents a method for weighting risk factor magnitudes, for example first magnitude 710 and last magnitude 712 , using corresponding weights, for example first weight 808 and last weight 810 .
- second weight set 812 represents a method for weighting risk factor magnitudes, for example first magnitude 710 and last magnitude 712 , using corresponding weights, for example first weight 814 and last weight 816 .
- server system 202 may generate, store, and retrieve from database 208 weighting model 802 associated with first audience 112 .
- Weighting model 802 includes two principal components 804 and 805 , which each correspond to a method of weighting and summing risk factor magnitudes from determined magnitude set 708 .
- first principal component 804 is equal to first weight 808 multiplied by first risk factor magnitude 710 , plus each remaining risk factor magnitude multiplied by a corresponding weight, for example last weight 810 multiplied by last risk factor magnitude 712 .
- Server system 202 may generate weighting model 802 by performing statistical analysis, for example principal component analysis (PCA).
- PCA principal component analysis
- server system 202 applies PCA to a predetermined number, for example 1000 , of randomly selected of publications.
- server system 202 selects the publications from a particular geographic region, for example the Middle East.
- Server system 202 determines inter-correlations and relationships among the risk factors in risk factor set 602 ( FIG. 6 ) to generate a two-factor structure of risk perception.
- the two factors of the structure are first principal component 804 , which may be termed “dread” and second principal component 805 , which may be termed “unknown”.
- server system 202 applies an orthogonal transformation to extract one or two variables (e.g., first principal component 804 and second principal component 805 ) that explain most of the variation within collected risk perception data for first audience 112 , which may be located in a particular geographic region (e.g., the Middle East).
- server system 202 extracts eigenvalues from a correlation coefficient matrix to determine which risk factors have the most influence.
- Server system 202 may determine an overall cumulative emotional intensity (i.e., a determination of a risk of emotional response) for one or more publications, for example first publication 110 , by determining the magnitude of the risk factors, as described above, and weighting the magnitudes of the risk factors using weight set 806 for first principal component 804 and weight set 812 for second principal component 805 , then summing first principal component 804 and second principal component 805 .
- an overall cumulative emotional intensity i.e., a determination of a risk of emotional response
- server system 202 detects even slight changes in the usage of a single risk factor (e.g. first risk factor 604 ) and calculates the resulting change in the risk of an emotional response from an audience, for example first audience 112 , according to the respective weight (e.g., first weight 808 and/or first weight 814 ) in weighting model 802 . Accordingly, server system 202 is able to precisely evaluate which issues (e.g., first issue 102 or second issue 103 ) in the media are likely to influence attitudes and behavior (i.e., emotional response) of one or more audiences, for example first audience 112 .
- issues e.g., first issue 102 or second issue 103
- FIG. 9 is an example plot 900 of a determined risk of an emotional response associated with first issue 102 for first audience 112 .
- First axis 902 ranges from ⁇ 1 to 1 and corresponds to first principal component 804 ( FIG. 8 ).
- Second axis 904 also ranges from ⁇ 1 to 1 and corresponds to second principal component 805 ( FIG. 8 ).
- first axis 902 and/or second axis 904 have different ranges.
- a higher number on an axis 902 or 904 represents a higher risk of an emotional response. Accordingly, point 906 , located in an upper right quadrant 908 , and representing the determined risk of an emotional response associated with first issue 102 for first audience 112 , is relatively high.
- Server system 202 may generate plot 900 upon receiving a selection of first audience 112 , first issue 102 , one or more publications 110 from one or more publishers 104 , 106 , 108 , and performing the processes described above with reference to FIGS. 6-8 to determine the corresponding risk of an emotional response.
- Server system 202 may transmit plot 900 to a client computing device 204 for display thereon, or may display or otherwise output plot 900 directly.
- FIG. 10 is a block diagram showing an example relationship between first audience 112 , a first prototype vector set 608 , first weighting model 802 , and second audience 114 , a second prototype vector set 1002 , and a second weighting model 1004 . More specifically, and as described above, first audience 112 falls into a different category than second audience 114 . Accordingly, second audience 114 may perceive publications 110 relating to an issue, for example first issue 102 , differently than first audience 112 . Accordingly, second audience 114 may have a different risk of an emotional response to the publications 110 than first audience 112 . To account for the differences in audiences 112 and 114 , server system 202 may generate, store, and retrieve from database 208 second prototype vector set 1002 and second weighting model 1004 for second audience 114 using processes described above with reference to first audience 112 .
- FIG. 11 is an example plot of determined risks of emotional responses associated with first issue 102 and second issue 103 for second audience 114 .
- First point 1106 corresponding to first issue 102
- Second point, 1108 corresponding to second issue 103
- Server system 202 may generate plot 1100 upon receiving a selection of second audience 112 , first issue 102 , second issue 103 , one or more publications 110 from one or more publishers 104 , 106 , 108 pertaining to first issue 102 and second issue 103 , and performing the processes described above with reference to FIGS. 6-8 to determine the corresponding risk of an emotional response for second audience 114 on first issue 102 and second issue 103 .
- Server system 202 may transmit plot 1100 to a client computing device 204 for display thereon, or may display or otherwise output plot 1100 directly.
- second audience has a lower risk of an emotional response to first issue 102 (point 1106 ) than does first audience 112 (point 906 of FIG. 9 ).
- FIG. 12 is an example plot 1200 of determined risks of emotional response associated with first issue 102 , based on publications from first publisher 104 and second publisher 106 , for first audience 112 .
- First point 1206 corresponding to one or more publications from first publisher 104 with regard to first issue 102 , falls into upper right quadrant 1210 .
- Second point, 1208 corresponding to one or more publications from second publisher 106 with regard to first issue 103 , falls into lower left quadrant 1212 . Accordingly, publications 110 from first publisher 104 represent a higher risk of an emotional response from first audience 112 with regard to first issue 102 than do publications 110 from second publisher on first issue 102 .
- plot 1200 separates out the determined risks of an emotional response for the same audience (first audience 112 ) for the same issue (first issue 102 ) based on who the publisher is (first publisher 104 or second publisher 106 ), and thereby indicates how each publisher 104 and 106 portrays the first issue 102 in their respective publications 110 .
- Server system 202 may generate plot 1200 upon receiving a selection of second audience 112 , first issue 102 , one or more publications 110 from publishers 104 and 106 pertaining to first issue 102 , and an indication that the determined risks of emotional response should be separated out by publisher. Server system 202 performs the processes described above with reference to FIGS. 6-8 to determine the corresponding risks of an emotional response based upon the above selections. Server system 202 may transmit plot 1200 to a client computing device 204 for display thereon, or may display or otherwise output plot 1200 directly.
- server system 202 may facilitate identifying potential for behavioral change and movements, or other emotional responses.
- risks of emotional response as described above, for issues (e.g., first issue 102 and second issue 103 ), between and across distinct audiences (e.g., first audience 112 and second audience 114 ), sever system 202 facilitates identifying possible signs of behavioral risk and social action.
- Analyzing a range of publications relating to varying issues using server system 202 facilitates determining an assessment of all publishers and their contributions to producing or mitigating a risk of an emotional response from an audience. Comparison of risk associated with each issue between various audiences, publications, publishers, and/or speakers may reveal conflicting communication strategies among publishers, including systematic attempts to manipulate public perception and mobilize or suppress social movement (i.e., an emotional response).
- FIG. 13 is a flowchart of an example process 1300 that may be performed by a computing device, for example server system 202 , to determine a risk of an emotional response of an audience (e.g., first audience 112 ) to at least one publication 110 .
- server system 202 receives 1302 at least one publication 110 .
- server system 202 retrieves 1304 , from database 208 , a set of prototype vectors, for example prototype vector set 608 , wherein each prototype vector (e.g., first prototype vector 610 ) is associated with a risk factor.
- first risk factor 604 is associated with first prototype vector 610 .
- Each risk factor influences a risk of an emotional response of first audience 112 and includes at least one word, for example first word 614 .
- server system 202 generates 1306 a test vector, (e.g., first test vector 704 ) corresponding to each prototype vector.
- first test vector 704 of test vector set 702 corresponds to first prototype vector 610 of prototype vector set 608 .
- Each test vector includes each word, for example first word 614 , in the corresponding prototype vector 610 that also appears in the at least one publication 110 .
- server system 202 determines 1308 a magnitude 710 of each risk factor 604 , by comparing each test vector 704 to the corresponding prototype vector 610 .
- server system 202 retrieves 1310 , from database 208 , a model 802 for weighting and summing the magnitudes 708 of the risk factors 602 .
- server system 202 determines a risk of an emotional response 906 of the audience 112 by weighting and summing the magnitudes 708 of the risk factors 602 according to the retrieved model 802 .
- FIG. 14 is a diagram of components of one or more example computing devices that may be used in server system 202 .
- FIG. 14 further shows a configuration of database 208 ( FIG. 2 ).
- Database 208 is coupled to several separate components within server system 202 , which perform specific tasks.
- Server system 202 includes a receiving component 1402 for receiving at least one publication 110 .
- Server system 202 also includes a retrieving component 1404 for retrieving, from database 208 , a set of prototype vectors, for example prototype vector set 608 .
- Each prototype vector (e.g., first prototype vector 610 ), is associated with a risk factor that influences a risk of an emotional response of first audience 112 .
- each prototype vector includes at least one word, for example first word 614 .
- server system 202 includes a generating component 1406 for generating a test vector corresponding to each prototype vector. Each test vector includes each word in the corresponding prototype vector that also appears in the at least one publication.
- server system 202 includes a determining component 1408 for determining a magnitude of each risk factor by comparing each test vector to the corresponding prototype vector. Additionally, server system 202 includes a retrieving component 1410 for retrieving, from the database 208 , a model for weighting and summing the magnitudes of the risk factors. Further, server system 202 includes a determining component 1312 for determining a risk of an emotional response of the audience by weighting and summing the magnitudes of the risk factors according to the retrieved model.
- database 208 is divided into a plurality of sections, including but not limited to, a prototype vector sets section 1414 , a publications section 1416 , a weighting models section 1418 , and a risk factor sets section 1420 . These sections within databases 208 are interconnected to retrieve and store information in accordance with the functions and processes described above.
- processor refers to central processing units, microprocessors, microcontrollers, reduced instruction set circuits (RISC), application specific integrated circuits (ASIC), logic circuits, and any other circuit or processor capable of executing the functions described herein.
- RISC reduced instruction set circuits
- ASIC application specific integrated circuits
- the terms “software” and “firmware” are interchangeable, and include any computer program stored in memory for execution by processor 205 , 305 , including RAM memory, ROM memory, EPROM memory, EEPROM memory, and non-volatile RAM (NVRAM) memory.
- RAM memory random access memory
- ROM memory read-only memory
- EPROM memory erasable programmable read-only memory
- EEPROM memory electrically erasable programmable read-only memory
- NVRAM non-volatile RAM
- the above-discussed embodiments of the disclosure may be implemented using computer programming or engineering techniques including computer software, firmware, hardware or any combination or subset thereof. Any such resulting computer program, having computer-readable and/or computer-executable instructions, may be embodied or provided within one or more computer-readable media, thereby making a computer program product, i.e., an article of manufacture, according to the discussed embodiments of the disclosure.
- These computer programs also known as programs, software, software applications or code
- machine-readable medium refers to any computer program product, apparatus and/or device (e.g., magnetic discs, optical disks, memory, Programmable Logic Devices (PLDs)) used to provide machine instructions and/or data to a programmable processor, including a machine-readable medium that receives machine instructions as a machine-readable signal.
- PLDs Programmable Logic Devices
- machine-readable signal refers to any signal used to provide machine instructions and/or data to a programmable processor.
Landscapes
- Business, Economics & Management (AREA)
- Strategic Management (AREA)
- Engineering & Computer Science (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- Finance (AREA)
- Entrepreneurship & Innovation (AREA)
- Game Theory and Decision Science (AREA)
- Data Mining & Analysis (AREA)
- Economics (AREA)
- Marketing (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/724,950 US11055728B2 (en) | 2013-09-05 | 2019-12-23 | Methods and systems for determining a risk of an emotional response of an audience |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/019,239 US10521807B2 (en) | 2013-09-05 | 2013-09-05 | Methods and systems for determining a risk of an emotional response of an audience |
US16/724,950 US11055728B2 (en) | 2013-09-05 | 2019-12-23 | Methods and systems for determining a risk of an emotional response of an audience |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/019,239 Continuation US10521807B2 (en) | 2013-09-05 | 2013-09-05 | Methods and systems for determining a risk of an emotional response of an audience |
Publications (2)
Publication Number | Publication Date |
---|---|
US20200126098A1 US20200126098A1 (en) | 2020-04-23 |
US11055728B2 true US11055728B2 (en) | 2021-07-06 |
Family
ID=52584497
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/019,239 Active 2034-06-28 US10521807B2 (en) | 2013-09-05 | 2013-09-05 | Methods and systems for determining a risk of an emotional response of an audience |
US16/724,950 Active US11055728B2 (en) | 2013-09-05 | 2019-12-23 | Methods and systems for determining a risk of an emotional response of an audience |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/019,239 Active 2034-06-28 US10521807B2 (en) | 2013-09-05 | 2013-09-05 | Methods and systems for determining a risk of an emotional response of an audience |
Country Status (1)
Country | Link |
---|---|
US (2) | US10521807B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10521807B2 (en) * | 2013-09-05 | 2019-12-31 | TSG Technologies, LLC | Methods and systems for determining a risk of an emotional response of an audience |
CN109508373B (en) * | 2018-11-13 | 2021-08-06 | 深圳前海微众银行股份有限公司 | Calculation method, device and computer-readable storage medium for enterprise public opinion index |
Citations (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6006206A (en) | 1997-09-08 | 1999-12-21 | Reuters Limited | Data health monitor for financial information communications networks |
US6311190B1 (en) | 1999-02-02 | 2001-10-30 | Harris Interactive Inc. | System for conducting surveys in different languages over a network with survey voter registration |
US6584470B2 (en) | 2001-03-01 | 2003-06-24 | Intelliseek, Inc. | Multi-layered semiotic mechanism for answering natural language questions using document retrieval combined with information extraction |
US6694307B2 (en) | 2001-03-07 | 2004-02-17 | Netvention | System for collecting specific information from several sources of unstructured digitized data |
US6983320B1 (en) | 2000-05-23 | 2006-01-03 | Cyveillance, Inc. | System, method and computer program product for analyzing e-commerce competition of an entity by utilizing predetermined entity-specific metrics and analyzed statistics from web pages |
US7013323B1 (en) | 2000-05-23 | 2006-03-14 | Cyveillance, Inc. | System and method for developing and interpreting e-commerce metrics by utilizing a list of rules wherein each rule contain at least one of entity-specific criteria |
US20060287989A1 (en) | 2005-06-16 | 2006-12-21 | Natalie Glance | Extracting structured data from weblogs |
US7185065B1 (en) | 2000-10-11 | 2007-02-27 | Buzzmetrics Ltd | System and method for scoring electronic messages |
US7188079B2 (en) | 2000-10-11 | 2007-03-06 | Buzzmetrics, Ltd. | System and method for collection and analysis of electronic discussion messages |
US7302475B2 (en) | 2004-02-20 | 2007-11-27 | Harris Interactive, Inc. | System and method for measuring reactions to product packaging, advertising, or product features over a computer-based network |
US20080109391A1 (en) * | 2006-11-07 | 2008-05-08 | Scanscout, Inc. | Classifying content based on mood |
US7437382B2 (en) | 2004-05-14 | 2008-10-14 | Microsoft Corporation | Method and system for ranking messages of discussion threads |
US7475007B2 (en) | 2004-02-20 | 2009-01-06 | International Business Machines Corporation | Expression extraction device, expression extraction method, and recording medium |
US20090048904A1 (en) | 2007-08-16 | 2009-02-19 | Christopher Daniel Newton | Method and system for determining topical on-line influence of an entity |
US7523085B2 (en) | 2004-09-30 | 2009-04-21 | Buzzmetrics, Ltd An Israel Corporation | Topical sentiments in electronically stored communications |
US7546310B2 (en) | 2004-11-19 | 2009-06-09 | International Business Machines Corporation | Expression detecting system, an expression detecting method and a program |
US7596552B2 (en) | 2005-08-05 | 2009-09-29 | Buzzmetrics Ltd. | Method and system for extracting web data |
US20090281851A1 (en) | 2008-05-07 | 2009-11-12 | Christopher Daniel Newton | Method and system for determining on-line influence in social media |
US7660783B2 (en) | 2006-09-27 | 2010-02-09 | Buzzmetrics, Inc. | System and method of ad-hoc analysis of data |
US20100119053A1 (en) | 2008-11-13 | 2010-05-13 | Buzzient, Inc. | Analytic measurement of online social media content |
US7725414B2 (en) | 2004-03-16 | 2010-05-25 | Buzzmetrics, Ltd An Israel Corporation | Method for developing a classifier for classifying communications |
US7761287B2 (en) | 2006-10-23 | 2010-07-20 | Microsoft Corporation | Inferring opinions based on learned probabilities |
US20110035211A1 (en) | 2009-08-07 | 2011-02-10 | Tal Eden | Systems, methods and apparatus for relative frequency based phrase mining |
US7930302B2 (en) | 2006-11-22 | 2011-04-19 | Intuit Inc. | Method and system for analyzing user-generated content |
US20110125550A1 (en) | 2009-11-20 | 2011-05-26 | Avaya Inc. | Method for determining customer value and potential from social media and other public data sources |
US7987188B2 (en) | 2007-08-23 | 2011-07-26 | Google Inc. | Domain-specific sentiment classification |
US8010545B2 (en) | 2008-08-28 | 2011-08-30 | Palo Alto Research Center Incorporated | System and method for providing a topic-directed search |
US20110282880A1 (en) | 2010-05-17 | 2011-11-17 | Yakir Krichman | Methods, apparatus, and articles of manufacture to rank web site influence |
US8126882B2 (en) | 2007-12-12 | 2012-02-28 | Google Inc. | Credibility of an author of online content |
US8165985B2 (en) | 2007-10-12 | 2012-04-24 | Palo Alto Research Center Incorporated | System and method for performing discovery of digital information in a subject area |
US8239397B2 (en) | 2009-01-27 | 2012-08-07 | Palo Alto Research Center Incorporated | System and method for managing user attention by detecting hot and cold topics in social indexes |
US8239189B2 (en) | 2008-02-26 | 2012-08-07 | Siemens Enterprise Communications Gmbh & Co. Kg | Method and system for estimating a sentiment for an entity |
US8301475B2 (en) | 2010-05-10 | 2012-10-30 | Microsoft Corporation | Organizational behavior monitoring analysis and influence |
US20130036126A1 (en) * | 2011-08-02 | 2013-02-07 | Anderson Tom H C | Natural language text analytics |
US8417713B1 (en) | 2007-12-05 | 2013-04-09 | Google Inc. | Sentiment detection as a ranking signal for reviewable entities |
US20130138430A1 (en) | 2009-08-14 | 2013-05-30 | Tal Eden | Methods and apparatus to classify text communications |
US8463595B1 (en) | 2012-03-06 | 2013-06-11 | Reputation.Com, Inc. | Detailed sentiment analysis |
US20140088944A1 (en) * | 2012-09-24 | 2014-03-27 | Adobe Systems Inc. | Method and apparatus for prediction of community reaction to a post |
US20140095425A1 (en) * | 2012-09-28 | 2014-04-03 | Sphere Of Influence, Inc. | System and method for predicting events |
US10521807B2 (en) * | 2013-09-05 | 2019-12-31 | TSG Technologies, LLC | Methods and systems for determining a risk of an emotional response of an audience |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7286977B1 (en) * | 2000-09-05 | 2007-10-23 | Novell, Inc. | Intentional-stance characterization of a general content stream or repository |
JP2006524009A (en) * | 2003-03-25 | 2006-10-19 | セドナ・パテント・サービシズ・エルエルシー | Generating audience analysis results |
JP5340751B2 (en) * | 2008-04-22 | 2013-11-13 | 株式会社エヌ・ティ・ティ・ドコモ | Document processing apparatus and document processing method |
US8600796B1 (en) * | 2012-01-30 | 2013-12-03 | Bazaarvoice, Inc. | System, method and computer program product for identifying products associated with polarized sentiments |
US9384493B2 (en) * | 2012-03-01 | 2016-07-05 | Visa International Service Association | Systems and methods to quantify consumer sentiment based on transaction data |
US8751429B2 (en) * | 2012-07-09 | 2014-06-10 | Wine Ring, Inc. | Personal taste assessment method and system |
US20140039857A1 (en) * | 2012-08-03 | 2014-02-06 | Daniel A. Hill | Emotional analytics for performance improvement |
WO2014085910A1 (en) * | 2012-12-04 | 2014-06-12 | Interaxon Inc. | System and method for enhancing content using brain-state data |
US9141604B2 (en) * | 2013-02-22 | 2015-09-22 | Riaex Inc | Human emotion assessment reporting technology—system and method |
-
2013
- 2013-09-05 US US14/019,239 patent/US10521807B2/en active Active
-
2019
- 2019-12-23 US US16/724,950 patent/US11055728B2/en active Active
Patent Citations (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6006206A (en) | 1997-09-08 | 1999-12-21 | Reuters Limited | Data health monitor for financial information communications networks |
US6587840B1 (en) | 1997-09-08 | 2003-07-01 | Reuters Limited | Data health monitor for financial information communications networks |
US7050981B2 (en) | 1997-09-08 | 2006-05-23 | Reuters Limited | Data health monitor for financial information communications networks |
US6311190B1 (en) | 1999-02-02 | 2001-10-30 | Harris Interactive Inc. | System for conducting surveys in different languages over a network with survey voter registration |
US7013323B1 (en) | 2000-05-23 | 2006-03-14 | Cyveillance, Inc. | System and method for developing and interpreting e-commerce metrics by utilizing a list of rules wherein each rule contain at least one of entity-specific criteria |
US6983320B1 (en) | 2000-05-23 | 2006-01-03 | Cyveillance, Inc. | System, method and computer program product for analyzing e-commerce competition of an entity by utilizing predetermined entity-specific metrics and analyzed statistics from web pages |
US7197470B1 (en) | 2000-10-11 | 2007-03-27 | Buzzmetrics, Ltd. | System and method for collection analysis of electronic discussion methods |
US7844484B2 (en) | 2000-10-11 | 2010-11-30 | Buzzmetrics, Ltd. | System and method for benchmarking electronic message activity |
US7185065B1 (en) | 2000-10-11 | 2007-02-27 | Buzzmetrics Ltd | System and method for scoring electronic messages |
US7188079B2 (en) | 2000-10-11 | 2007-03-06 | Buzzmetrics, Ltd. | System and method for collection and analysis of electronic discussion messages |
US7188078B2 (en) | 2000-10-11 | 2007-03-06 | Buzzmetrics, Ltd. | System and method for collection and analysis of electronic discussion messages |
US7844483B2 (en) | 2000-10-11 | 2010-11-30 | Buzzmetrics, Ltd. | System and method for predicting external events from electronic author activity |
US7600017B2 (en) | 2000-10-11 | 2009-10-06 | Buzzmetrics, Ltd. | System and method for scoring electronic messages |
US7363243B2 (en) | 2000-10-11 | 2008-04-22 | Buzzmetrics, Ltd. | System and method for predicting external events from electronic posting activity |
US6584470B2 (en) | 2001-03-01 | 2003-06-24 | Intelliseek, Inc. | Multi-layered semiotic mechanism for answering natural language questions using document retrieval combined with information extraction |
US6694307B2 (en) | 2001-03-07 | 2004-02-17 | Netvention | System for collecting specific information from several sources of unstructured digitized data |
US7302475B2 (en) | 2004-02-20 | 2007-11-27 | Harris Interactive, Inc. | System and method for measuring reactions to product packaging, advertising, or product features over a computer-based network |
US7475007B2 (en) | 2004-02-20 | 2009-01-06 | International Business Machines Corporation | Expression extraction device, expression extraction method, and recording medium |
US7725414B2 (en) | 2004-03-16 | 2010-05-25 | Buzzmetrics, Ltd An Israel Corporation | Method for developing a classifier for classifying communications |
US7437382B2 (en) | 2004-05-14 | 2008-10-14 | Microsoft Corporation | Method and system for ranking messages of discussion threads |
US8041669B2 (en) | 2004-09-30 | 2011-10-18 | Buzzmetrics, Ltd. | Topical sentiments in electronically stored communications |
US7523085B2 (en) | 2004-09-30 | 2009-04-21 | Buzzmetrics, Ltd An Israel Corporation | Topical sentiments in electronically stored communications |
US7546310B2 (en) | 2004-11-19 | 2009-06-09 | International Business Machines Corporation | Expression detecting system, an expression detecting method and a program |
US20060287989A1 (en) | 2005-06-16 | 2006-12-21 | Natalie Glance | Extracting structured data from weblogs |
US7596552B2 (en) | 2005-08-05 | 2009-09-29 | Buzzmetrics Ltd. | Method and system for extracting web data |
US7660783B2 (en) | 2006-09-27 | 2010-02-09 | Buzzmetrics, Inc. | System and method of ad-hoc analysis of data |
US7761287B2 (en) | 2006-10-23 | 2010-07-20 | Microsoft Corporation | Inferring opinions based on learned probabilities |
US20080109391A1 (en) * | 2006-11-07 | 2008-05-08 | Scanscout, Inc. | Classifying content based on mood |
US7930302B2 (en) | 2006-11-22 | 2011-04-19 | Intuit Inc. | Method and system for analyzing user-generated content |
US20090048904A1 (en) | 2007-08-16 | 2009-02-19 | Christopher Daniel Newton | Method and system for determining topical on-line influence of an entity |
US7987188B2 (en) | 2007-08-23 | 2011-07-26 | Google Inc. | Domain-specific sentiment classification |
US8356030B2 (en) | 2007-08-23 | 2013-01-15 | Google Inc. | Domain-specific sentiment classification |
US8165985B2 (en) | 2007-10-12 | 2012-04-24 | Palo Alto Research Center Incorporated | System and method for performing discovery of digital information in a subject area |
US8417713B1 (en) | 2007-12-05 | 2013-04-09 | Google Inc. | Sentiment detection as a ranking signal for reviewable entities |
US8126882B2 (en) | 2007-12-12 | 2012-02-28 | Google Inc. | Credibility of an author of online content |
US8150842B2 (en) | 2007-12-12 | 2012-04-03 | Google Inc. | Reputation of an author of online content |
US20120265755A1 (en) | 2007-12-12 | 2012-10-18 | Google Inc. | Authentication of a Contributor of Online Content |
US8239189B2 (en) | 2008-02-26 | 2012-08-07 | Siemens Enterprise Communications Gmbh & Co. Kg | Method and system for estimating a sentiment for an entity |
US20090281851A1 (en) | 2008-05-07 | 2009-11-12 | Christopher Daniel Newton | Method and system for determining on-line influence in social media |
US8010545B2 (en) | 2008-08-28 | 2011-08-30 | Palo Alto Research Center Incorporated | System and method for providing a topic-directed search |
US20100119053A1 (en) | 2008-11-13 | 2010-05-13 | Buzzient, Inc. | Analytic measurement of online social media content |
US8375024B2 (en) | 2008-11-13 | 2013-02-12 | Buzzient, Inc. | Modeling social networks using analytic measurements of online social media content |
US8239397B2 (en) | 2009-01-27 | 2012-08-07 | Palo Alto Research Center Incorporated | System and method for managing user attention by detecting hot and cold topics in social indexes |
US20110035211A1 (en) | 2009-08-07 | 2011-02-10 | Tal Eden | Systems, methods and apparatus for relative frequency based phrase mining |
US20130138430A1 (en) | 2009-08-14 | 2013-05-30 | Tal Eden | Methods and apparatus to classify text communications |
US8458154B2 (en) | 2009-08-14 | 2013-06-04 | Buzzmetrics, Ltd. | Methods and apparatus to classify text communications |
US20110125550A1 (en) | 2009-11-20 | 2011-05-26 | Avaya Inc. | Method for determining customer value and potential from social media and other public data sources |
US8301475B2 (en) | 2010-05-10 | 2012-10-30 | Microsoft Corporation | Organizational behavior monitoring analysis and influence |
US20110282880A1 (en) | 2010-05-17 | 2011-11-17 | Yakir Krichman | Methods, apparatus, and articles of manufacture to rank web site influence |
US20130036126A1 (en) * | 2011-08-02 | 2013-02-07 | Anderson Tom H C | Natural language text analytics |
US8463595B1 (en) | 2012-03-06 | 2013-06-11 | Reputation.Com, Inc. | Detailed sentiment analysis |
US20140088944A1 (en) * | 2012-09-24 | 2014-03-27 | Adobe Systems Inc. | Method and apparatus for prediction of community reaction to a post |
US20140095425A1 (en) * | 2012-09-28 | 2014-04-03 | Sphere Of Influence, Inc. | System and method for predicting events |
US10521807B2 (en) * | 2013-09-05 | 2019-12-31 | TSG Technologies, LLC | Methods and systems for determining a risk of an emotional response of an audience |
Non-Patent Citations (20)
Title |
---|
Blei, et al., "COS 424: Interacting with Data" Lecture No. 22, Apr. 24, 2008, 5 pages. |
Final Office Action for U.S. Appl. No. 14/019,239 dated Aug. 21, 2019, 10 pages. |
Final Office Action for U.S. Appl. No. 14/019,239 dated Jan. 6, 2017, 12 pages. |
Final Office Action for U.S. Appl. No. 14/019,239 dated Jul. 1, 2016, 10 pages. |
Final Office Action for U.S. Appl. No. 14/019,239 dated Jun. 11, 2018, 16 pages. |
Final Office Action for U.S. Appl. No. 14/019,239 dated Mar. 20, 2017, 13 pages. |
Final Office Action for U.S. Appl. No. 14/019,239 dated Oct. 26, 2017, 14 pages. |
Maheswaran, et al., "The Influence of Message Framing and Issue Involvement", Journal of Marketing Research, 1990, pp. 361-367, vol. XXVII, 7 pages. |
Nguyen et al. "Predicting Collective Sentiment Dynamics from Time-Series Social Media." WISDOM '12, Aug. 12, 2012. * |
Non-Final Office Action for U.S. Appl. No. 14/019,239 dated Dec. 18, 2015, 18 pages. |
Non-Final Office Action for U.S. Appl. No. 14/019,239 dated Feb. 23, 2018, 16 pages. |
Non-Final Office Action for U.S. Appl. No. 14/019,239 dated Jun. 28, 2017, 15 pages. |
Non-Final Office Action for U.S. Appl. No. 14/019,239 dated Mar. 7, 2019, 9 pages. |
Notice of Allowance for U.S. Appl. No. 14/019,239 dated Oct. 7, 2019, 6 pages. |
Rothman, et al., "Shaping Perceptions to Motivate Healthy Behavior: The Role of Message Framing", Psychological Bulletin, 1997, pp. 3-19, vol. 121, No. 1, 17 pages. |
Rothman, et al., "The Influence of Message Framing on Intentions to Perform Health Behaviors", Journal of Experimental Social Psychology, 1993, pp. 408-433, vol. 29, 26 pages. |
Scherer, et al., "Human Emotion Experiences Can Be Predicted on Theoretical Grounds: Evidence from Verbal Labeling" PLOS One, Swiss Center for Affective Sciences, University of Geneva, Switzerland, Mar. 2013, vol. 8, Issue 3, e58166, 8 pages. |
Slovic, "Informing and Educating the Public About Risk", Risk Analysis, 1986, pp. 403-415, vol. 6, No. 4, 13 pages. |
Slovic, et al., "Behavioral Decision Theory Perspectives on Risk and Safety", Acta Psychologica, 1984, pp. 183-203, vol. 56, 21 pages. |
Williams et al. "Policing Cyber-Neighbourhoods: Tension Monitoring and Social Media Networks." Policing and Society, vol. 23, 2013, Issue 4, May 20, 2013. * |
Also Published As
Publication number | Publication date |
---|---|
US20150066585A1 (en) | 2015-03-05 |
US10521807B2 (en) | 2019-12-31 |
US20200126098A1 (en) | 2020-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11995091B2 (en) | Website scoring system | |
US11436530B2 (en) | Classifying user behavior as anomalous | |
JP6393805B2 (en) | Efficient query processing using histograms in the columnar database | |
US11625602B2 (en) | Detection of machine learning model degradation | |
EP3537325B1 (en) | Interactive user interfaces | |
US11924217B2 (en) | Data security systems and methods | |
US20180191759A1 (en) | Systems and methods for modeling and monitoring data access behavior | |
US11275748B2 (en) | Influence score of a social media domain | |
US20160162759A1 (en) | Abnormal pattern analysis method, abnormal pattern analysis apparatus performing the same and storage medium storing the same | |
Michael | Fundamental questions of earthquake statistics, source behavior, and the estimation of earthquake probabilities from possible foreshocks | |
US11055728B2 (en) | Methods and systems for determining a risk of an emotional response of an audience | |
US20170004188A1 (en) | Apparatus and Method for Graphically Displaying Transaction Logs | |
US20150220850A1 (en) | System and Method for Generation of a Heuristic | |
US20150269241A1 (en) | Time series clustering | |
US20230259569A1 (en) | Systems and methods for automatic and adaptive browser bookmarks | |
Anderson et al. | A ground motion based procedure to identify the earthquakes that are the most relevant for probabilistic seismic hazard analysis | |
CN116860311A (en) | Script analysis method, script analysis device, computer equipment and storage medium | |
Herawan et al. | Mining critical least association rules of student suffering language and social anxieties | |
US20200334876A1 (en) | Visual representation of directional correlation of service health | |
CN119760201A (en) | Method, device, equipment, medium and product for updating data classification and grading standards | |
Ward et al. | Evaluation of ETAS and STEP Forecasting Models for California Seismicity Using Point Process Residuals | |
CN117828327A (en) | Method and device for constructing safety early warning model of power system and computer equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: TSG TECHNOLOGIES, LLC, MISSOURI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SARDELLA, ANTONIO;REEL/FRAME:053591/0518 Effective date: 20130904 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |