US7181594B2 - Context pipelines - Google Patents
Context pipelines Download PDFInfo
- Publication number
- US7181594B2 US7181594B2 US10/057,723 US5772302A US7181594B2 US 7181594 B2 US7181594 B2 US 7181594B2 US 5772302 A US5772302 A US 5772302A US 7181594 B2 US7181594 B2 US 7181594B2
- Authority
- US
- United States
- Prior art keywords
- programming
- tasks
- multiple tasks
- instructions
- engines
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 238000000034 method Methods 0.000 claims abstract description 34
- 238000012545 processing Methods 0.000 claims abstract description 34
- 238000012546 transfer Methods 0.000 claims abstract description 18
- 230000008569 process Effects 0.000 claims description 8
- 238000012544 monitoring process Methods 0.000 claims description 4
- 238000004590 computer program Methods 0.000 claims 6
- 238000010586 diagram Methods 0.000 description 7
- 230000011664 signaling Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 241001522296 Erithacus rubecula Species 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000006855 networking Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000006399 behavior Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/38—Concurrent instruction execution, e.g. pipeline or look ahead
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/461—Saving or restoring of program or task context
- G06F9/462—Saving or restoring of program or task context with multiple register sets
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/30—Arrangements for executing machine instructions, e.g. instruction decode
- G06F9/30098—Register arrangements
- G06F9/3012—Organisation of register space, e.g. banked or distributed register file
- G06F9/30123—Organisation of register space, e.g. banked or distributed register file according to context, e.g. thread buffers
Definitions
- Parallel processing is an efficient form of information processing of concurrent events in a computing process.
- Parallel processing demands concurrent execution of many programs in a computer, in contrast to sequential processing.
- parallelism involves doing more than one thing at the same time.
- serial paradigm where all tasks are performed sequentially at a single station or a pipelined machine where tasks are performed at specialized stations
- parallel processing many stations are provided, each capable of performing various tasks simultaneously. A number of stations work simultaneously and independently on the same or common elements of a computing task. Accordingly, using or applying parallel processing can solve computing tasks.
- FIG. 1 is a block diagram of a communication system employing a hardware-based multithreaded processor.
- FIG. 2 is a block diagram of a programming engine functional unit employed in the hardware-based multithreaded processor of FIG. 1 .
- FIG. 3 is a block diagram of a context state transition.
- FIG. 4 is a block diagram of a context addressable memory (CAM).
- CAM context addressable memory
- FIG. 5 is a detailed block diagram of a CAM process.
- FIG. 6 is a simplified block diagram of a context pipeline process.
- a computer processing system 10 includes a parallel, hardware-based multithreaded network processor 12 .
- the hardware-based multithreaded processor 12 is coupled to a memory system or memory resource 14 .
- Memory system 14 includes dynamic random access memory (DRAM) 14 a and static random access memory 14 b (SRAM).
- DRAM dynamic random access memory
- SRAM static random access memory
- the processing system 10 is especially useful for tasks that can be broken into parallel subtasks or functions.
- the hardware-based multithreaded processor 12 is useful for tasks that are bandwidth oriented rather than latency oriented.
- the hardware-based multithreaded processor 12 has multiple functional microengines or programming engines 16 each with multiple hardware controlled threads that are simultaneously active and independently work on a specific task.
- the programming engines 16 each maintain program counters in hardware and states associated with the program counters. Effectively, corresponding sets of context or threads can be simultaneously active on each of the programming engines 16 while only one is actually operating at any one time.
- the hardware-based multithreaded processor 12 includes a dynamic random access memory (DRAM) controller 18 a and a static random access memory (SRAM) controller 18 b.
- DRAM dynamic random access memory
- SRAM static random access memory
- the DRAM memory 14 a and DRAM controller 18 a are typically used for processing large volumes of data, e.g., processing of network payloads from network packets.
- the SRAM memory 14 b and SRAM controller 18 b are used in a networking implementation for low latency, fast access tasks, e.g., accessing look-up tables, memory for the core processor 20 , and the like.
- the eight programming engines 16 a – 16 h access either the DRAM memory 14 a or SRAM memory 14 b based on characteristics of the data. Thus, low latency, low bandwidth data is stored in and fetched from SRAM memory 14 b, whereas higher bandwidth data for which latency is not as important, is stored in and fetched from DRAM memory 14 a.
- the programming engines 16 a – 16 h can execute memory reference instructions to either the DRAM controller 18 a or SRAM controller 18 b.
- the hardware-based multithreaded processor 12 also includes a processor core 20 for loading microcode control for the programming engines 16 a – 16 h.
- the processor core 20 is an XScaleTM based architecture.
- the processor core 20 performs general purpose computer type functions such as handling protocols, exceptions, and extra support for packet processing where the programming engines 16 pass the packets off for more detailed processing such as in boundary conditions.
- the processor core 20 has an operating system (not shown). Through the operating system (OS), the processor core 20 can call functions to operate on the programming engines 16 a – 16 h.
- the processor core 20 can use any supported OS, in particular, a real time OS.
- OS operating system
- SRAM or DRAM memory accesses can be explained by SRAM or DRAM memory accesses.
- an SRAM access requested by a context e.g., Thread — 0
- the SRAM controller 18 b accesses the SRAM memory 14 b, fetches the data from the SRAM memory 14 b, and returns data to a requesting programming engine 16 .
- Thread — 1 can function while the first thread, Thread — 0, is awaiting the read data to return.
- Thread — 1 may access the DRAM memory 14 a.
- Thread — 1 operates on the DRAM unit, and Thread — 0 is operating on the SRAM unit, a new thread, e.g., Thread — 2 can now operate in the programming engine 16 .
- Thread — 2 can operate for a certain amount of time until it needs to access memory or perform some other long latency operation, such as making an access to a bus interface. Therefore, simultaneously, the multi-threaded processor 12 can have a bus operation, an SRAM operation, and a DRAM operation all being completed or operated upon by one of the programming engines 16 and have one more threads or contexts available to process more work.
- the hardware context swapping also synchronizes the completion of tasks. For example, two threads can access the shared memory resource, e.g., the SRAM memory 14 b. Each one of the separate functional units, e.g., the SRAM controller 18 b, and the DRAM controller 18 a, when they complete a requested task from one of the programming engine threads or contexts reports back a flag signaling completion of an operation. When the programming engines 16 a – 16 h receive the flag, the programming engines 16 a – 16 h can determine which thread to turn on.
- the hardware-based multithreaded processor 12 interfaces to network devices such as a Media Access Controller (MAC) device, e.g., a 10/100BaseT Octal MAC or a Gigabit Ethernet device.
- MAC Media Access Controller
- the hardware-based multithreaded processor 12 can interface to any type of communication device or interface that receives or sends large amount of data.
- the computer processing system 10 functioning in a networking application can receive network packets and process those packets in a parallel manner.
- the programming engine 16 a includes a control store 30 , which in one example includes a RAM of 4096 instructions, each of which is 40-bits wide.
- the RAM stores a microprogram that the programming engine 16 a executes.
- the microprogram in the control store 30 is loadable by the processor core 20 ( FIG. 1 ).
- the programming engine 16 a employs signaling states that are global. With signaling states, an executing thread can broadcast a signal state to all programming engines 16 a – 16 h. Any and all threads in the programming engines can branch on these signaling states. These signaling states can be used to determine availability of a resource or whether a resource is due for servicing.
- the context event logic has arbitration for the eight (8) threads. In one example, the arbitration is a round robin mechanism. Other techniques could be used including priority queuing or weighted fair queuing.
- the programming engine 16 a supports multi-threaded execution of eight contexts. This allows one thread to start executing just after another thread issues a memory reference and must wait until that reference completes before doing more work. Multi-threaded execution is critical to maintaining efficient hardware execution of the programming engine 16 a because memory latency is significant. Multi-threaded execution allows the programming engines 16 to hide memory latency by performing useful independent work across several threads.
- the programming engine 16 a to allow for efficient context swapping, has its own register set, program counter, and context specific local registers. Having a copy per context eliminates the need to move context specific information to and from shared memory and programming engine registers for each context swap. Fast context swapping allows a context to do computation while other contexts wait for input-output (I/O), typically, external memory accesses to complete or for a signal from another context or hardware unit.
- I/O input-output
- the programming engine 16 a executes the eight contexts by maintaining eight program counters and eight context relative sets of registers.
- GPRs general purpose registers
- SRAM Static Random Access Memory
- DRAM Dynamic Random Access Memory
- the GPRs 32 are used for general programming purposes.
- the GPRs 32 are read and written exclusively under program control.
- the GPRs 32 when used as a source in an instruction, supply operands to an execution datapath 44 .
- the GPRs 32 are written with the result of the execution datapath 44 .
- the programming engine 16 a also includes I/O transfer registers 34 , 36 , 38 and 40 which are used for transferring data to and from the programming engine 16 a and locations external to the programming engines 16 a, e.g., the DRAM memory 14 a, the SRAM memory 14 b, etc.
- a local memory 42 is also used.
- the local memory 42 is addressable storage located in the programming engine 16 a.
- the local memory 42 is read and written exclusively under program control.
- the local memory 42 also includes variables shared by all the programming engines 16 a – 16 h. Shared variables are modified in various assigned tasks during functional pipeline stages by the programming engines 16 a – 16 h, which are described next.
- the shared variables include a critical section, defining the read-modify-write times. The implementation and use of the critical section in the computing processing system 10 is also described below.
- Each of the programming engine 16 supports multi-threaded execution of eight contexts.
- One reason for this is to allow one thread to start executing just after another thread issues a memory reference and must wait until that reference completes before doing more work. This behavior is critical to maintaining efficient hardware execution of the programming engines 16 a – 16 f because memory latency is significant. Stated differently, if only a single thread execution was supported, the programming engine would sit idle for a significant number of cycles waiting for references to complete and thereby reduce overall computational throughput. Multi-threaded execution allows a programming engine to hide memory latency by performing useful independent work across several threads.
- the programming engines 16 a – 16 h each have eight available contexts. To allow for efficient context swapping, each of the eight contexts in the programming engine has its own register set, program counter, and context specific local registers. Having a copy per context eliminates the need to move context specific information to/from shared memory and programming engine registers for each context swap. Fast context swapping allows a context to do computation while other contexts wait for I/O, typically external memory accesses, to complete or for a signal from another context or hardware unit.
- FIG. 3 illustrates the state transitions 100 for a context.
- Each of the eight contexts will be in one of the states described above. At most, one context can be in the executing state at a time and any number of contexts can be in any of the other states:
- Ready state ( 100 b )—In this state, although a context is ready to execute, the context cannot proceed because a different context is still executing.
- the programming engine's context arbiter selects the next context to go to the executing state from among all the contexts in the ready state. The arbitration is round robin.
- Executing state ( 100 c ) A context is in an executing state when its context number is in Active_CTX_Status CSR.
- the executing context's programming counter (not shown) is used to fetch instructions from the control store 50 .
- a context remains in the executing state until it executes an instruction that causes it to enter the sleep state. At most, one context can be in the executing state at any time.
- Sleep state ( 100 d )—A context is waiting for external event(s)specified in the CTX_#_Wakeup_Events CSR to occur where # indicates eight different contexts such as context #0 through #7, typically, but not limited to, an I/O access. In this state, the context does not arbitrate to enter the executing state.
- each programming engine 22 includes four types of 32-bit datapath registers as described below.
- the programming engine 16 a includes General Purpose Registers (GPRs) 52 which are used for general programming purposes. They are read and written exclusively under program control.
- the GPRs 52 when used as a source in an instruction, supply operands to an execution datapath 56 . When used as a destination in an instruction, the GPRs 52 are written with the result of the execution datapath 56 .
- the GPRs 52 are physically and logically contained in two banks, GPR A 52 a and GPR B 52 b, as illustrated in FIG. 3 .
- the programming engine 16 a also includes transfer registers 58 and 60 .
- Transfer registers 34 , 36 , 38 and 40 are used for transferring data to and from the programming engine 16 a and locations external to the programming engine, e.g., DRAMs, SRAMs etc.
- There are four types of transfer registers as illustrated in FIG. 2 namely, input transfer registers and output transfer registers.
- the input transfer registers when used as a source in an instruction supply operands to the execution datapath 44 .
- the output transfer registers when used as a destination in an instruction, are written with the result from the execution datapath 44 .
- CSRs Local Control and Status Registers
- CSRs Local control and status registers
- CSRs are external to the execution data path 56 and hold specific purpose information. They can be read and written by special instructions (local_csr_rd and local_csr_wr) and are typically accessed less frequently than datapath registers.
- the programming engine 16 a also includes 128 Next Neighbor (NN) registers 54 .
- Each NN Register 54 when used as a source in an instruction, also supplies operands to the execution datapath 44 .
- the NN register 54 is written either by an external entity, not limited to, an adjacent programming engine, or by the same programming engine 16 a where the NN register 54 resides.
- the specific register is selected by a context-relative operation where the register number is encoded in the instruction, or as a ring operation, selected via, e.g., NN_Put (NN write address) and NN_Get (NN read address) in the CSR Registers.
- NN_Put registers are used when the previous neighboring programming engine executes an instruction with NN_Put as a destination.
- the NN register 54 selected by the value in this register is written, and the value in NN_Put is then incremented (a value of 127 wraps back to 0).
- the value in this register is compared to the value in NN_Get register to determine when to assert NN_Full and NN_Empty status signals.
- NN_Get registers are used when the NN register 54 is accessed as a source, which is specified in the source field of the instruction.
- the NN register 54 selected by the value in this register is read, and the value in NN_Put is then incremented (a value of 127 wraps back to 0).
- the value in this register is compared to the value in the NN_Put register to determine when to assert NN_Full and NN_Empty status signals.
- the instruction result data is sent out of the programming engine 16 a, typically to another, adjacent programming engine.
- the instruction result data is written to the selected NN Register 54 in the programming engine 16 a.
- the data is not sent out of the programming engine 22 f as it would be when the NN register 54 is used as a destination.
- the NN register 54 is used in a context pipelining method, as described below.
- the programming engine 16 a includes 640 32-bit words in a local memory 42 .
- Local memory 42 is addressable storage located in the programming engine 16 a.
- the local memory 42 is read and written exclusively under program control.
- the local memory 42 supplies operands to the execution datapath 44 as a source, and receives results as a destination.
- the specific local memory location selected is based on the value in one of the LM_Addr registers 53 , which is written by local_CSR_wr instructions.
- the local memory 42 also includes variables shared by the programming engines 16 a – 16 h. Shared variables are modified in various assigned tasks used during pipeline stages by the programming engines 16 a – 16 h.
- the shared variables include a critical section which defines their read-modify-write times.
- the pipeline stages of the programming engines 16 a – 16 h include a minimum resolution defined by the difference between the critical section of the shared variables and the arrival time of a subsequent packet.
- the time allotted to the critical section must be less than the arrival time of the subsequent packet, which determines the minimum resolution of the pipeline stage.
- the programming engine 16 a also includes the execution data path 44 that can take one or two operands, perform an operation, and optionally write back a result.
- the sources and destinations can be GPRs 32 , transfer registers 34 , 36 , 38 , and 40 , NN register 54 , and the local memory 42 .
- the operations are shifts, add/subtract, logicals, multiply, byte align, and find first one bit.
- the execution data path 44 also includes a content addressable memory (CAM) 64 .
- CAM content addressable memory
- FIG. 4 illustrates a CAM block diagram 102 .
- the programming engine 16 a includes the 16 entry CAM 64 with associated control logic 104 . Each entry stores a 32-bit value, which can be compared against a source operand. All entries are compared in parallel and the result of the lookup is a 6-bit value.
- the 6-bit result consists of a 2-bit code concatenated with 4-bit entry number 106 . Possible results of a lookup 108 are two fold.
- a first result is a miss (0) 110 where the lookup value is not in the CAM 64 and the entry number is the Least Recently Used (LRU) entry which can be used as a suggested entry to replace.
- the second result can be a hit (1) 112 where the lookup value is in the CAM 64 , and the entry number is an entry which has matched.
- LRU Least Recently Used
- the LRU Logic 104 maintains a time-ordered list of the entry usage for the CAM 64 .
- a lookup 108 When an entry is loaded or matches with a lookup 108 , it is marked as a MRU (Most Recently Used). A lookup that misses does not modify the LRU list.
- the programming engine 16 a utilizes a 16-entry cache or CAM 64 with a LRU replacement policy to store a list of recently used variables working on eight (8) active contexts or threads at a time.
- the threads are executed in order, using a read phase 122 and a modify-write phase (not shown).
- a context requests a variable and the CAM 64 is checked to see if the needed variable is cached ( 124 ). If the CAM 64 indicates a hit, no read is necessary and the content of the CAM 64 gives the location of the variable in the CAM ( 126 ).
- the updated value of the variable will be stored in the cache when this context becomes active for its modify-write phase, with the context reading the value directly from the CAM 64 ( 128 ).
- the CAM 64 indicates a miss during the read phase 122 , a read of the needed variable is initiated ( 130 ). Consequently, the execution time of the remaining seven (7) contexts is being used to completely hide the latency of the read ( 132 ). Moreover, the variable is available at the modify write stage of this context ( 132 ). The write latency of the critical section is avoided since the variable is already valid in the CAM 64 if recently used.
- the CAM is written or updated ( 134 ). The content of the CAM 64 provides the location of the LRU cached variable, with the new variable overriding the previously used variable ( 136 ).
- the context reads the value directly from the CAM 64 ( 136 ), and the context returns to the beginning of the read phase ( 122 ). Consequently, each programming engine becomes a pipeline stage, performing a specialized task of the packet processing, also monitoring the context or variable(s) used for particular tasks.
- a context pipeline 130 flow illustrates programming engines 16 a – 16 h assigned to specific portions of a processing task of a packet or cell.
- the context for a specific assigned task is maintained on the programming engines 16 a – 16 h using the CAM 64 a – 64 c.
- the packets are processed in a pipelined fashion similar to an assembly line using the NN registers 54 a – 54 c to pass data from one programming engine to a subsequent, adjacent programming engine.
- Data is passed from one stage 132 a to a subsequent stage 132 b and then from stage 132 b to stage 132 c of the pipeline, and so forth.
- data is passed to the next stage of the pipeline allowing the steps in the processor cycle to overlap.
- the next instruction can be fetched, which means that more than one instruction can be in the “pipe” at any one time, each at a different stage of being processed.
- data can be passed forward from one programming engine 16 to the next programming engine 16 in the pipeline using the NN registers 54 a – 54 c.
- This method of implementing pipelined processing has the advantage that the information included in the CAM 64 a – 64 c for each stage 132 a–c is consistently valid for all eight contexts of the pipeline stage.
- the context pipeline method may be utilized when minimal data from the packet being processed must advance through the context pipeline 130 .
Landscapes
- Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Advance Control (AREA)
- Memory System Of A Hierarchy Structure (AREA)
- Multi Processors (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Devices For Executing Special Programs (AREA)
- Multi-Process Working Machines And Systems (AREA)
- Numerical Control (AREA)
- Exchange Systems With Centralized Control (AREA)
Abstract
Description
Claims (38)
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/057,723 US7181594B2 (en) | 2002-01-25 | 2002-01-25 | Context pipelines |
AU2003209290A AU2003209290A1 (en) | 2002-01-25 | 2003-01-16 | Pipelines of multithreaded processor cores for packet processing |
AT03707442T ATE375552T1 (en) | 2002-01-25 | 2003-01-16 | CHAINING OF MULTI-THREAD PROCESSOR CORES FOR PROCESSING DATA PACKETS |
CA002473551A CA2473551C (en) | 2002-01-25 | 2003-01-16 | Context pipelines |
PCT/US2003/001580 WO2003065207A2 (en) | 2002-01-25 | 2003-01-16 | Pipelines of multithreaded processor cores for packet processing |
EP03707442A EP1481323B1 (en) | 2002-01-25 | 2003-01-16 | Pipelines of multithreaded processor cores for packet processing |
KR1020037017289A KR100613923B1 (en) | 2002-01-25 | 2003-01-16 | How to allocate packets to multiple programming engines using multiple pipelines, processors, computer readable storage media, and multiprocessing systems |
DE60316774T DE60316774T2 (en) | 2002-01-25 | 2003-01-16 | CHAINING MULTIPLE PROCESSOR CORE FOR MACHINING DATA PACKAGES |
CNB038024640A CN100440151C (en) | 2002-01-25 | 2003-01-16 | Method and device for parallel multi-thread processing |
TW092101590A TWI231914B (en) | 2002-01-25 | 2003-01-24 | Context pipelines |
HK05102095A HK1072298A1 (en) | 2002-01-25 | 2005-03-10 | Pipe lines of multihreaded processor cores for packet processing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/057,723 US7181594B2 (en) | 2002-01-25 | 2002-01-25 | Context pipelines |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030145173A1 US20030145173A1 (en) | 2003-07-31 |
US7181594B2 true US7181594B2 (en) | 2007-02-20 |
Family
ID=27609476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/057,723 Expired - Fee Related US7181594B2 (en) | 2002-01-25 | 2002-01-25 | Context pipelines |
Country Status (11)
Country | Link |
---|---|
US (1) | US7181594B2 (en) |
EP (1) | EP1481323B1 (en) |
KR (1) | KR100613923B1 (en) |
CN (1) | CN100440151C (en) |
AT (1) | ATE375552T1 (en) |
AU (1) | AU2003209290A1 (en) |
CA (1) | CA2473551C (en) |
DE (1) | DE60316774T2 (en) |
HK (1) | HK1072298A1 (en) |
TW (1) | TWI231914B (en) |
WO (1) | WO2003065207A2 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020053017A1 (en) * | 2000-09-01 | 2002-05-02 | Adiletta Matthew J. | Register instructions for a multithreaded processor |
US20020056037A1 (en) * | 2000-08-31 | 2002-05-09 | Gilbert Wolrich | Method and apparatus for providing large register address space while maximizing cycletime performance for a multi-threaded register file set |
US20030191866A1 (en) * | 2002-04-03 | 2003-10-09 | Gilbert Wolrich | Registers for data transfers |
US20070140282A1 (en) * | 2005-12-21 | 2007-06-21 | Sridhar Lakshmanamurthy | Managing on-chip queues in switched fabric networks |
US7421572B1 (en) | 1999-09-01 | 2008-09-02 | Intel Corporation | Branch instruction for processor with branching dependent on a specified bit in a register |
US20090106187A1 (en) * | 2007-10-18 | 2009-04-23 | Nec Corporation | Information processing apparatus having process units operable in parallel |
US7546444B1 (en) | 1999-09-01 | 2009-06-09 | Intel Corporation | Register set used in multithreaded parallel processor architecture |
US20110224549A1 (en) * | 2008-11-14 | 2011-09-15 | Hitachi Medical Corporation | Ultrasonic diagnostic apparatus and method for generating ultrasonic images |
US8127262B1 (en) * | 2008-12-18 | 2012-02-28 | Xilinx, Inc. | Communicating state data between stages of pipelined packet processor |
US9330060B1 (en) * | 2003-04-15 | 2016-05-03 | Nvidia Corporation | Method and device for encoding and decoding video image data |
US10353826B2 (en) * | 2017-07-14 | 2019-07-16 | Arm Limited | Method and apparatus for fast context cloning in a data processing system |
US10467159B2 (en) | 2017-07-14 | 2019-11-05 | Arm Limited | Memory node controller |
US10489304B2 (en) | 2017-07-14 | 2019-11-26 | Arm Limited | Memory address translation |
US10534719B2 (en) | 2017-07-14 | 2020-01-14 | Arm Limited | Memory system for a data processing network |
US10565126B2 (en) | 2017-07-14 | 2020-02-18 | Arm Limited | Method and apparatus for two-layer copy-on-write |
US10592424B2 (en) | 2017-07-14 | 2020-03-17 | Arm Limited | Range-based memory system |
US10613989B2 (en) | 2017-07-14 | 2020-04-07 | Arm Limited | Fast address translation for virtual machines |
US10884850B2 (en) | 2018-07-24 | 2021-01-05 | Arm Limited | Fault tolerant memory system |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6934951B2 (en) * | 2002-01-17 | 2005-08-23 | Intel Corporation | Parallel processor with functional pipeline providing programming engines by supporting multiple contexts and critical section |
US20040034858A1 (en) * | 2002-08-14 | 2004-02-19 | Kushlis Robert J. | Programming a multi-threaded processor |
US7277990B2 (en) | 2004-09-30 | 2007-10-02 | Sanjeev Jain | Method and apparatus providing efficient queue descriptor memory access |
US7555630B2 (en) | 2004-12-21 | 2009-06-30 | Intel Corporation | Method and apparatus to provide efficient communication between multi-threaded processing elements in a processor unit |
US7418543B2 (en) | 2004-12-21 | 2008-08-26 | Intel Corporation | Processor having content addressable memory with command ordering |
US7467256B2 (en) | 2004-12-28 | 2008-12-16 | Intel Corporation | Processor having content addressable memory for block-based queue structures |
US20060236011A1 (en) * | 2005-04-15 | 2006-10-19 | Charles Narad | Ring management |
US7853951B2 (en) * | 2005-07-25 | 2010-12-14 | Intel Corporation | Lock sequencing to reorder and grant lock requests from multiple program threads |
US20070044103A1 (en) * | 2005-07-25 | 2007-02-22 | Mark Rosenbluth | Inter-thread communication of lock protected data |
US20070124728A1 (en) * | 2005-11-28 | 2007-05-31 | Mark Rosenbluth | Passing work between threads |
US7624250B2 (en) | 2005-12-05 | 2009-11-24 | Intel Corporation | Heterogeneous multi-core processor having dedicated connections between processor cores |
US20070245074A1 (en) * | 2006-03-30 | 2007-10-18 | Rosenbluth Mark B | Ring with on-chip buffer for efficient message passing |
US7926013B2 (en) * | 2007-12-31 | 2011-04-12 | Intel Corporation | Validating continuous signal phase matching in high-speed nets routed as differential pairs |
Citations (182)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3373408A (en) | 1965-04-16 | 1968-03-12 | Rca Corp | Computer capable of switching between programs without storage and retrieval of the contents of operation registers |
US3478322A (en) | 1967-05-23 | 1969-11-11 | Ibm | Data processor employing electronically changeable control storage |
US3792441A (en) | 1972-03-08 | 1974-02-12 | Burroughs Corp | Micro-program having an overlay micro-instruction |
US3940745A (en) | 1973-06-05 | 1976-02-24 | Ing. C. Olivetti & C., S.P.A. | Data processing unit having a plurality of hardware circuits for processing data at different priority levels |
US4130890A (en) | 1977-06-08 | 1978-12-19 | Itt Industries, Inc. | Integrated DDC memory with bitwise erase |
US4400770A (en) | 1980-11-10 | 1983-08-23 | International Business Machines Corporation | Cache synonym detection and handling means |
JPS59111533U (en) | 1983-01-19 | 1984-07-27 | 株式会社池田地球 | Handbag handle attachment |
US4514807A (en) | 1980-05-21 | 1985-04-30 | Tatsuo Nogi | Parallel computer |
US4523272A (en) | 1981-04-10 | 1985-06-11 | Hitachi, Ltd. | Bus selection control in a data transmission apparatus for a multiprocessor system |
US4745544A (en) | 1985-12-12 | 1988-05-17 | Texas Instruments Incorporated | Master/slave sequencing processor with forced I/O |
US4866664A (en) | 1987-03-09 | 1989-09-12 | Unisys Corporation | Intercomputer communication control apparatus & method |
US5140685A (en) | 1988-03-14 | 1992-08-18 | Unisys Corporation | Record lock processing for multiprocessing data system with majority voting |
US5142683A (en) | 1987-03-09 | 1992-08-25 | Unisys Corporation | Intercomputer communication control apparatus and method |
US5155854A (en) | 1989-02-03 | 1992-10-13 | Digital Equipment Corporation | System for arbitrating communication requests using multi-pass control unit based on availability of system resources |
US5155831A (en) | 1989-04-24 | 1992-10-13 | International Business Machines Corporation | Data processing system with fast queue store interposed between store-through caches and a main memory |
US5168555A (en) | 1989-09-06 | 1992-12-01 | Unisys Corporation | Initial program load control |
US5173897A (en) | 1989-12-23 | 1992-12-22 | Alcatel N.V. | Method of restoring the correct cell sequence, particularly in an atm exchange, and output unit therefor |
US5255239A (en) | 1991-08-13 | 1993-10-19 | Cypress Semiconductor Corporation | Bidirectional first-in-first-out memory device with transparent and user-testable capabilities |
US5263169A (en) | 1989-11-03 | 1993-11-16 | Zoran Corporation | Bus arbitration and resource management for concurrent vector signal processor architecture |
WO1994015287A2 (en) | 1992-12-23 | 1994-07-07 | Centre Electronique Horloger S.A. | Multi-tasking low-power controller |
US5347648A (en) | 1990-06-29 | 1994-09-13 | Digital Equipment Corporation | Ensuring write ordering under writeback cache error conditions |
US5367678A (en) | 1990-12-06 | 1994-11-22 | The Regents Of The University Of California | Multiprocessor system having statically determining resource allocation schedule at compile time and the using of static schedule with processor signals to control the execution time dynamically |
US5390329A (en) | 1990-06-11 | 1995-02-14 | Cray Research, Inc. | Responding to service requests using minimal system-side context in a multiprocessor environment |
US5392411A (en) | 1992-02-03 | 1995-02-21 | Matsushita Electric Industrial Co., Ltd. | Dual-array register file with overlapping window registers |
US5392412A (en) | 1991-10-03 | 1995-02-21 | Standard Microsystems Corporation | Data communication controller for use with a single-port data packet buffer |
US5392391A (en) | 1991-10-18 | 1995-02-21 | Lsi Logic Corporation | High performance graphics applications controller |
US5404482A (en) | 1990-06-29 | 1995-04-04 | Digital Equipment Corporation | Processor and method for preventing access to a locked memory block by recording a lock in a content addressable memory with outstanding cache fills |
US5404464A (en) | 1993-02-11 | 1995-04-04 | Ast Research, Inc. | Bus control system and method that selectively generate an early address strobe |
US5432918A (en) | 1990-06-29 | 1995-07-11 | Digital Equipment Corporation | Method and apparatus for ordering read and write operations using conflict bits in a write queue |
EP0379709B1 (en) | 1989-01-27 | 1995-08-23 | International Business Machines Corporation | Single-fifo high speed combining switch |
US5448702A (en) | 1993-03-02 | 1995-09-05 | International Business Machines Corporation | Adapters with descriptor queue management capability |
US5450351A (en) | 1993-11-19 | 1995-09-12 | International Business Machines Corporation | Content addressable memory implementation with random access memory |
US5452437A (en) | 1991-11-18 | 1995-09-19 | Motorola, Inc. | Methods of debugging multiprocessor system |
US5459842A (en) | 1992-06-26 | 1995-10-17 | International Business Machines Corporation | System for combining data from multiple CPU write requests via buffers and using read-modify-write operation to write the combined data to the memory |
US5463625A (en) | 1993-09-29 | 1995-10-31 | International Business Machines Corporation | High performance machine for switched communications in a heterogeneous data processing network gateway |
US5467452A (en) | 1992-07-17 | 1995-11-14 | International Business Machines Corporation | Routing control information via a bus selectively controls whether data should be routed through a switch or a bus according to number of destination processors |
US5517648A (en) | 1993-04-30 | 1996-05-14 | Zenith Data Systems Corporation | Symmetric multiprocessing system with unified environment and distributed system functions |
US5542088A (en) | 1994-04-29 | 1996-07-30 | Intergraph Corporation | Method and apparatus for enabling control of task execution |
US5542070A (en) | 1993-05-20 | 1996-07-30 | Ag Communication Systems Corporation | Method for rapid development of software systems |
US5544236A (en) | 1994-06-10 | 1996-08-06 | At&T Corp. | Access to unsubscribed features |
US5550816A (en) | 1994-12-29 | 1996-08-27 | Storage Technology Corporation | Method and apparatus for virtual switching |
US5557766A (en) | 1991-10-21 | 1996-09-17 | Kabushiki Kaisha Toshiba | High-speed processor for handling multiple interrupts utilizing an exclusive-use bus and current and previous bank pointers to specify a return bank |
US5568617A (en) | 1986-03-12 | 1996-10-22 | Hitachi, Ltd. | Processor element having a plurality of processors which communicate with each other and selectively use a common bus |
US5574922A (en) | 1994-06-17 | 1996-11-12 | Apple Computer, Inc. | Processor with sequences of processor instructions for locked memory updates |
EP0745933A2 (en) | 1995-06-02 | 1996-12-04 | International Business Machines Corporation | Multiple port register file with interleaved write ports |
US5592622A (en) | 1995-05-10 | 1997-01-07 | 3Com Corporation | Network intermediate system with message passing architecture |
US5613071A (en) | 1995-07-14 | 1997-03-18 | Intel Corporation | Method and apparatus for providing remote memory access in a distributed memory multiprocessor system |
US5613136A (en) | 1991-12-04 | 1997-03-18 | University Of Iowa Research Foundation | Locality manager having memory and independent code, bus interface logic, and synchronization components for a processing element for intercommunication in a latency tolerant multiple processor |
US5623489A (en) | 1991-09-26 | 1997-04-22 | Ipc Information Systems, Inc. | Channel allocation system for distributed digital switching network |
US5627829A (en) | 1993-10-07 | 1997-05-06 | Gleeson; Bryan J. | Method for reducing unnecessary traffic over a computer network |
US5644623A (en) | 1994-03-01 | 1997-07-01 | Safco Technologies, Inc. | Automated quality assessment system for cellular networks by using DTMF signals |
US5649157A (en) | 1995-03-30 | 1997-07-15 | Hewlett-Packard Co. | Memory controller with priority queues |
US5659687A (en) | 1995-11-30 | 1997-08-19 | Electronics & Telecommunications Research Institute | Device for controlling memory data path in parallel processing computer system |
WO1997038372A1 (en) | 1996-04-04 | 1997-10-16 | Videologic Limited | A data processing management system |
US5680641A (en) | 1995-08-16 | 1997-10-21 | Sharp Microelectronics Technology, Inc. | Multiple register bank system for concurrent I/O operation in a CPU datapath |
US5689722A (en) | 1993-01-22 | 1997-11-18 | University Corporation For Atmospheric Research | Multipipeline multiprocessor system |
US5689566A (en) | 1995-10-24 | 1997-11-18 | Nguyen; Minhtam C. | Network with secure communications sessions |
US5699537A (en) | 1995-12-22 | 1997-12-16 | Intel Corporation | Processor microarchitecture for efficient dynamic scheduling and execution of chains of dependent instructions |
EP0464715B1 (en) | 1990-06-29 | 1998-01-28 | Digital Equipment Corporation | Interlock queueing |
US5717898A (en) | 1991-10-11 | 1998-02-10 | Intel Corporation | Cache coherency mechanism for multiprocessor computer systems |
US5721870A (en) | 1994-05-25 | 1998-02-24 | Nec Corporation | Lock control for a shared main storage data processing system |
US5742822A (en) * | 1994-12-19 | 1998-04-21 | Nec Corporation | Multithreaded processor which dynamically discriminates a parallel execution and a sequential execution of threads |
US5742782A (en) | 1994-04-15 | 1998-04-21 | Hitachi, Ltd. | Processing apparatus for executing a plurality of VLIW threads in parallel |
US5742587A (en) | 1997-02-28 | 1998-04-21 | Lanart Corporation | Load balancing port switching hub |
US5745913A (en) | 1996-08-05 | 1998-04-28 | Exponential Technology, Inc. | Multi-processor DRAM controller that prioritizes row-miss requests to stale banks |
US5751987A (en) | 1990-03-16 | 1998-05-12 | Texas Instruments Incorporated | Distributed processing memory chip with embedded logic having both data memory and broadcast memory |
US5761522A (en) | 1995-05-24 | 1998-06-02 | Fuji Xerox Co., Ltd. | Program control system programmable to selectively execute a plurality of programs |
US5761507A (en) | 1996-03-05 | 1998-06-02 | International Business Machines Corporation | Client/server architecture supporting concurrent servers within a server with a transaction manager providing server/connection decoupling |
US5781774A (en) | 1994-06-29 | 1998-07-14 | Intel Corporation | Processor having operating modes for an upgradeable multiprocessor computer system |
US5784712A (en) | 1995-03-01 | 1998-07-21 | Unisys Corporation | Method and apparatus for locally generating addressing information for a memory access |
US5784649A (en) | 1996-03-13 | 1998-07-21 | Diamond Multimedia Systems, Inc. | Multi-threaded FIFO pool buffer and bus transfer control system |
US5797043A (en) | 1996-03-13 | 1998-08-18 | Diamond Multimedia Systems, Inc. | System for managing the transfer of data between FIFOs within pool memory and peripherals being programmable with identifications of the FIFOs |
US5796413A (en) | 1995-12-06 | 1998-08-18 | Compaq Computer Corporation | Graphics controller utilizing video memory to provide macro command capability and enhanched command buffering |
US5809235A (en) | 1996-03-08 | 1998-09-15 | International Business Machines Corporation | Object oriented network event management framework |
US5809530A (en) | 1995-11-13 | 1998-09-15 | Motorola, Inc. | Method and apparatus for processing multiple cache misses using reload folding and store merging |
US5812868A (en) | 1996-09-16 | 1998-09-22 | Motorola Inc. | Method and apparatus for selecting a register file in a data processing system |
US5828746A (en) | 1995-06-07 | 1998-10-27 | Lucent Technologies Inc. | Telecommunications network |
US5828863A (en) | 1995-06-09 | 1998-10-27 | Canon Information Systems, Inc. | Interface device connected between a LAN and a printer for outputting formatted debug information about the printer to the printer |
US5832215A (en) | 1990-07-10 | 1998-11-03 | Fujitsu Limited | Data gathering/scattering system for a plurality of processors in a parallel computer |
US5835755A (en) | 1994-04-04 | 1998-11-10 | At&T Global Information Solutions Company | Multi-processor computer system for operating parallel client/server database processes |
US5854922A (en) | 1997-01-16 | 1998-12-29 | Ford Motor Company | Micro-sequencer apparatus and method of combination state machine and instruction memory |
US5860158A (en) | 1996-11-15 | 1999-01-12 | Samsung Electronics Company, Ltd. | Cache control unit with a cache request transaction-oriented protocol |
US5886992A (en) | 1995-04-14 | 1999-03-23 | Valtion Teknillinen Tutkimuskeskus | Frame synchronized ring system and method |
US5887134A (en) | 1997-06-30 | 1999-03-23 | Sun Microsystems | System and method for preserving message order while employing both programmed I/O and DMA operations |
US5890208A (en) | 1996-03-30 | 1999-03-30 | Samsung Electronics Co., Ltd. | Command executing method for CD-ROM disk drive |
US5892979A (en) | 1994-07-20 | 1999-04-06 | Fujitsu Limited | Queue control apparatus including memory to save data received when capacity of queue is less than a predetermined threshold |
US5905889A (en) | 1997-03-20 | 1999-05-18 | International Business Machines Corporation | Resource management system using next available integer from an integer pool and returning the integer thereto as the next available integer upon completion of use |
US5905876A (en) | 1996-12-16 | 1999-05-18 | Intel Corporation | Queue ordering for memory and I/O transactions in a multiple concurrent transaction computer system |
US5913059A (en) | 1996-08-30 | 1999-06-15 | Nec Corporation | Multi-processor system for inheriting contents of register from parent thread to child thread |
US5915123A (en) | 1997-10-31 | 1999-06-22 | Silicon Spice | Method and apparatus for controlling configuration memory contexts of processing elements in a network of multiple context processing elements |
US5937187A (en) | 1996-07-01 | 1999-08-10 | Sun Microsystems, Inc. | Method and apparatus for execution and preemption control of computer process entities |
US5940866A (en) | 1995-12-13 | 1999-08-17 | International Business Machines Corporation | Information handling system having a local address queue for local storage of command blocks transferred from a host processing side |
US5938736A (en) | 1997-06-30 | 1999-08-17 | Sun Microsystems, Inc. | Search engine architecture for a high performance multi-layer switch element |
US5940612A (en) | 1995-09-27 | 1999-08-17 | International Business Machines Corporation | System and method for queuing of tasks in a multiprocessing system |
US5946487A (en) | 1996-06-10 | 1999-08-31 | Lsi Logic Corporation | Object-oriented multi-media architecture |
US5948081A (en) | 1997-12-22 | 1999-09-07 | Compaq Computer Corporation | System for flushing queued memory write request corresponding to a queued read request and all prior write requests with counter indicating requests to be flushed |
US5958031A (en) | 1996-06-25 | 1999-09-28 | Samsung Electronics Co., Ltd. | Data transmitting/receiving device of a multiprocessor system and method therefor |
US5961628A (en) | 1997-01-28 | 1999-10-05 | Samsung Electronics Co., Ltd. | Load and store unit for a vector processor |
US5970013A (en) | 1998-02-26 | 1999-10-19 | Lucent Technologies Inc. | Adaptive addressable circuit redundancy method and apparatus with broadcast write |
US5978838A (en) | 1996-08-19 | 1999-11-02 | Samsung Electronics Co., Ltd. | Coordination and synchronization of an asymmetric, single-chip, dual multiprocessor |
US5983274A (en) | 1997-05-08 | 1999-11-09 | Microsoft Corporation | Creation and use of control information associated with packetized network data by protocol drivers and device drivers |
US6006321A (en) * | 1997-06-13 | 1999-12-21 | Malleable Technologies, Inc. | Programmable logic datapath that may be used in a field programmable device |
US6012151A (en) | 1996-06-28 | 2000-01-04 | Fujitsu Limited | Information processing apparatus and distributed processing control method |
US6014729A (en) | 1997-09-29 | 2000-01-11 | Firstpass, Inc. | Shared memory arbitration apparatus and method |
US6023742A (en) | 1996-07-18 | 2000-02-08 | University Of Washington | Reconfigurable computing architecture for providing pipelined data paths |
US6058168A (en) | 1995-12-29 | 2000-05-02 | Tixi.Com Gmbh Telecommunication Systems | Method and microcomputer system for the automatic, secure and direct transmission of data |
US6067585A (en) | 1997-06-23 | 2000-05-23 | Compaq Computer Corporation | Adaptive interface controller that can operate with segments of different protocol and transmission rates in a single integrated device |
US6067300A (en) * | 1998-06-11 | 2000-05-23 | Cabletron Systems, Inc. | Method and apparatus for optimizing the transfer of data packets between local area networks |
US6070231A (en) | 1997-12-02 | 2000-05-30 | Intel Corporation | Method and apparatus for processing memory requests that require coherency transactions |
US6073215A (en) | 1998-08-03 | 2000-06-06 | Motorola, Inc. | Data processing system having a data prefetch mechanism and method therefor |
US6073159A (en) | 1996-12-31 | 2000-06-06 | Compaq Computer Corporation | Thread properties attribute vector based thread selection in multithreading processor |
US6072781A (en) | 1996-10-22 | 2000-06-06 | International Business Machines Corporation | Multi-tasking adapter for parallel network applications |
US6079008A (en) | 1998-04-03 | 2000-06-20 | Patton Electronics Co. | Multiple thread multiple data predictive coded parallel processing system and method |
US6085215A (en) | 1993-03-26 | 2000-07-04 | Cabletron Systems, Inc. | Scheduling mechanism using predetermined limited execution time processing threads in a communication network |
US6085294A (en) | 1997-10-24 | 2000-07-04 | Compaq Computer Corporation | Distributed data dependency stall mechanism |
US6092127A (en) | 1998-05-15 | 2000-07-18 | Hewlett-Packard Company | Dynamic allocation and reallocation of buffers in links of chained DMA operations by receiving notification of buffer full and maintaining a queue of buffers available |
US6092158A (en) | 1997-06-13 | 2000-07-18 | Intel Corporation | Method and apparatus for arbitrating between command streams |
EP0633678B1 (en) | 1993-06-29 | 2000-07-19 | Alcatel | Resequencing method and resequencing device realizing such a method |
US6112016A (en) | 1995-04-12 | 2000-08-29 | Intel Corporation | Method and apparatus for sharing a signal line between agents |
US6134665A (en) | 1998-01-20 | 2000-10-17 | Digital Equipment Corporation | Computer with remote wake up and transmission of a status packet when the computer fails a self test |
US6141765A (en) | 1997-05-19 | 2000-10-31 | Gigabus, Inc. | Low power, high speed communications bus |
US6141689A (en) | 1993-10-01 | 2000-10-31 | International Business Machines Corp. | Method and mechanism for allocating switched communications ports in a heterogeneous data processing network gateway |
US6144669A (en) | 1997-12-12 | 2000-11-07 | Newbridge Networks Corporation | Prioritized PVC management queues for improved frame processing capabilities |
US6145054A (en) | 1998-01-21 | 2000-11-07 | Sun Microsystems, Inc. | Apparatus and method for handling multiple mergeable misses in a non-blocking cache |
US6157955A (en) | 1998-06-15 | 2000-12-05 | Intel Corporation | Packet processing system including a policy engine having a classification unit |
US6160562A (en) | 1998-08-18 | 2000-12-12 | Compaq Computer Corporation | System and method for aligning an initial cache line of data read from local memory by an input/output device |
US6170051B1 (en) * | 1997-08-01 | 2001-01-02 | Micron Technology, Inc. | Apparatus and method for program level parallelism in a VLIW processor |
US6182177B1 (en) | 1997-06-13 | 2001-01-30 | Intel Corporation | Method and apparatus for maintaining one or more queues of elements such as commands using one or more token queues |
US6195676B1 (en) | 1989-12-29 | 2001-02-27 | Silicon Graphics, Inc. | Method and apparatus for user side scheduling in a multiprocessor operating system program that implements distributive scheduling of processes |
US6199133B1 (en) | 1996-03-29 | 2001-03-06 | Compaq Computer Corporation | Management communication bus for networking devices |
WO2001016770A1 (en) | 1999-08-31 | 2001-03-08 | Intel Corporation | Sdram controller for parallel processor architecture |
WO2001015718A1 (en) | 1999-08-27 | 2001-03-08 | Cheil Jedang Corporation | Extracts derived from pueraria mirifica, butea superba and/or mucuna collettii and extraction thereof |
US6201807B1 (en) | 1996-02-27 | 2001-03-13 | Lucent Technologies | Real-time hardware method and apparatus for reducing queue processing |
US6212542B1 (en) | 1996-12-16 | 2001-04-03 | International Business Machines Corporation | Method and system for executing a program within a multiscalar processor by processing linked thread descriptors |
US6212611B1 (en) | 1998-11-03 | 2001-04-03 | Intel Corporation | Method and apparatus for providing a pipelined memory controller |
US6216220B1 (en) | 1998-04-08 | 2001-04-10 | Hyundai Electronics Industries Co., Ltd. | Multithreaded data processing method with long latency subinstructions |
US6223238B1 (en) | 1998-03-31 | 2001-04-24 | Micron Electronics, Inc. | Method of peer-to-peer mastering over a computer bus |
US6223207B1 (en) | 1995-04-24 | 2001-04-24 | Microsoft Corporation | Input/output completion port queue data structures and methods for using same |
US6223279B1 (en) | 1991-04-30 | 2001-04-24 | Kabushiki Kaisha Toshiba | Single chip microcomputer having a dedicated address bus and dedicated data bus for transferring register bank data to and from an on-line RAM |
WO2001016782A3 (en) | 1999-08-31 | 2001-05-31 | Intel Corp | Parallel processor architecture |
US6247025B1 (en) | 1997-07-17 | 2001-06-12 | International Business Machines Corporation | Locking and unlocking mechanism for controlling concurrent access to objects |
US6256713B1 (en) | 1999-04-29 | 2001-07-03 | International Business Machines Corporation | Bus optimization with read/write coherence including ordering responsive to collisions |
US6266760B1 (en) * | 1996-04-11 | 2001-07-24 | Massachusetts Institute Of Technology | Intermediate-grain reconfigurable processing device |
US6272616B1 (en) | 1998-06-17 | 2001-08-07 | Agere Systems Guardian Corp. | Method and apparatus for executing multiple instruction streams in a digital processor with multiple data paths |
US6275505B1 (en) | 1998-05-30 | 2001-08-14 | Alcatel Canada Inc. | Method and apparatus for packetizing data into a data stream |
US6279113B1 (en) | 1998-03-16 | 2001-08-21 | Internet Tools, Inc. | Dynamic signature inspection-based network intrusion detection |
US6289011B1 (en) | 1997-05-21 | 2001-09-11 | Samsung Electronics Co., Ltd. | 2n×n multiplexing switch |
US6298370B1 (en) | 1997-04-04 | 2001-10-02 | Texas Instruments Incorporated | Computer operating process allocating tasks between first and second processors at run time based upon current processor load |
US6307789B1 (en) | 1999-12-28 | 2001-10-23 | Intel Corporation | Scratchpad memory |
US6324624B1 (en) | 1999-12-28 | 2001-11-27 | Intel Corporation | Read lock miss control and queue management |
US6327650B1 (en) * | 1999-02-12 | 2001-12-04 | Vsli Technology, Inc. | Pipelined multiprocessing with upstream processor concurrently writing to local register and to register of downstream processor |
WO2001050679A3 (en) | 1999-12-29 | 2002-01-17 | Intel Corp | Method and apparatus for gigabit packet assignment for multithreaded packet processing |
WO2001050247A3 (en) | 2000-01-05 | 2002-01-31 | Intel Corp | Memory shared between processing threads |
US6345334B1 (en) | 1998-01-07 | 2002-02-05 | Nec Corporation | High speed semiconductor memory device capable of changing data sequence for burst transmission |
US6347344B1 (en) | 1998-10-14 | 2002-02-12 | Hitachi, Ltd. | Integrated multimedia system with local processor, data transfer switch, processing modules, fixed functional unit, data streamer, interface unit and multiplexer, all integrated on multimedia processor |
US6356962B1 (en) | 1998-09-30 | 2002-03-12 | Stmicroelectronics, Inc. | Network device and method of controlling flow of data arranged in frames in a data-based network |
US6360262B1 (en) | 1997-11-24 | 2002-03-19 | International Business Machines Corporation | Mapping web server objects to TCP/IP ports |
WO2001095101A3 (en) | 2000-06-02 | 2002-03-21 | Sun Microsystems Inc | Synchronizing partially pipelined instructions in vliw processors |
US6373848B1 (en) | 1998-07-28 | 2002-04-16 | International Business Machines Corporation | Architecture for a multi-port adapter with a single media access control (MAC) |
US6389449B1 (en) | 1998-12-16 | 2002-05-14 | Clearwater Networks, Inc. | Interstream control and communications for multi-streaming digital processors |
US6393483B1 (en) | 1997-06-30 | 2002-05-21 | Adaptec, Inc. | Method and apparatus for network interface card load balancing and port aggregation |
US6415338B1 (en) | 1998-02-11 | 2002-07-02 | Globespan, Inc. | System for writing a data value at a starting address to a number of consecutive locations equal to a segment length identifier |
WO2001048606A3 (en) | 1999-12-28 | 2002-07-11 | Intel Corp | Allocation of data to threads in multi-threaded network processor |
US6426940B1 (en) | 1997-06-30 | 2002-07-30 | Samsung Electronics, Co. Ltd. | Large scaled fault tolerant ATM switch and a self-routing method in a 2N×N multiplexing switch |
US6427196B1 (en) | 1999-08-31 | 2002-07-30 | Intel Corporation | SRAM controller for parallel processor architecture including address and command queue and arbiter |
US6430626B1 (en) | 1996-12-30 | 2002-08-06 | Compaq Computer Corporation | Network switch with a multiple bus structure and a bridge interface for transferring network data between different buses |
US6434145B1 (en) | 1998-06-22 | 2002-08-13 | Applied Micro Circuits Corporation | Processing of network data by parallel processing channels |
US20020116587A1 (en) | 2000-12-22 | 2002-08-22 | Modelski Richard P. | External memory engine selectable pipeline architecture |
US6463072B1 (en) | 1999-12-28 | 2002-10-08 | Intel Corporation | Method and apparatus for sharing access to a bus |
WO2001048619A3 (en) | 1999-12-28 | 2002-11-14 | Intel Corp | Distributed memory control and bandwidth optimization |
US6532509B1 (en) | 1999-12-22 | 2003-03-11 | Intel Corporation | Arbitrating command requests in a parallel multi-threaded processing system |
US20030067913A1 (en) | 2001-10-05 | 2003-04-10 | International Business Machines Corporation | Programmable storage network protocol handler architecture |
US6552826B2 (en) | 1997-02-21 | 2003-04-22 | Worldquest Network, Inc. | Facsimile network |
US6584522B1 (en) | 1999-12-30 | 2003-06-24 | Intel Corporation | Communication between processors |
US20030135351A1 (en) | 2002-01-17 | 2003-07-17 | Wilkinson Hugh M. | Functional pipelines |
US6631430B1 (en) | 1999-12-28 | 2003-10-07 | Intel Corporation | Optimizations to receive packet status from fifo bus |
US6668317B1 (en) | 1999-08-31 | 2003-12-23 | Intel Corporation | Microengine for parallel processor architecture |
US6694380B1 (en) | 1999-12-27 | 2004-02-17 | Intel Corporation | Mapping requests from a processing unit that uses memory-mapped input-output space |
US6718457B2 (en) | 1998-12-03 | 2004-04-06 | Sun Microsystems, Inc. | Multiple-thread processor for threaded software applications |
US6745317B1 (en) * | 1999-07-30 | 2004-06-01 | Broadcom Corporation | Three level direct communication connections between neighboring multiple context processing elements |
EP0809180B1 (en) | 1996-05-22 | 2004-07-28 | Seiko Epson Corporation | Data processing circuit, microcomputer, and electronic equipment |
EP1148414B1 (en) | 2000-03-30 | 2005-12-21 | Agere Systems Guardian Corporation | Method and apparatus for allocating functional units in a multithreaded VLIW processor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7546444B1 (en) * | 1999-09-01 | 2009-06-09 | Intel Corporation | Register set used in multithreaded parallel processor architecture |
-
2002
- 2002-01-25 US US10/057,723 patent/US7181594B2/en not_active Expired - Fee Related
-
2003
- 2003-01-16 KR KR1020037017289A patent/KR100613923B1/en not_active Expired - Fee Related
- 2003-01-16 CA CA002473551A patent/CA2473551C/en not_active Expired - Fee Related
- 2003-01-16 CN CNB038024640A patent/CN100440151C/en not_active Expired - Fee Related
- 2003-01-16 DE DE60316774T patent/DE60316774T2/en not_active Expired - Lifetime
- 2003-01-16 AU AU2003209290A patent/AU2003209290A1/en not_active Abandoned
- 2003-01-16 AT AT03707442T patent/ATE375552T1/en not_active IP Right Cessation
- 2003-01-16 EP EP03707442A patent/EP1481323B1/en not_active Expired - Lifetime
- 2003-01-16 WO PCT/US2003/001580 patent/WO2003065207A2/en active IP Right Grant
- 2003-01-24 TW TW092101590A patent/TWI231914B/en not_active IP Right Cessation
-
2005
- 2005-03-10 HK HK05102095A patent/HK1072298A1/en not_active IP Right Cessation
Patent Citations (203)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3373408A (en) | 1965-04-16 | 1968-03-12 | Rca Corp | Computer capable of switching between programs without storage and retrieval of the contents of operation registers |
US3478322A (en) | 1967-05-23 | 1969-11-11 | Ibm | Data processor employing electronically changeable control storage |
US3792441A (en) | 1972-03-08 | 1974-02-12 | Burroughs Corp | Micro-program having an overlay micro-instruction |
US3940745A (en) | 1973-06-05 | 1976-02-24 | Ing. C. Olivetti & C., S.P.A. | Data processing unit having a plurality of hardware circuits for processing data at different priority levels |
US4130890A (en) | 1977-06-08 | 1978-12-19 | Itt Industries, Inc. | Integrated DDC memory with bitwise erase |
US4514807A (en) | 1980-05-21 | 1985-04-30 | Tatsuo Nogi | Parallel computer |
US4400770A (en) | 1980-11-10 | 1983-08-23 | International Business Machines Corporation | Cache synonym detection and handling means |
US4523272A (en) | 1981-04-10 | 1985-06-11 | Hitachi, Ltd. | Bus selection control in a data transmission apparatus for a multiprocessor system |
JPS59111533U (en) | 1983-01-19 | 1984-07-27 | 株式会社池田地球 | Handbag handle attachment |
US4745544A (en) | 1985-12-12 | 1988-05-17 | Texas Instruments Incorporated | Master/slave sequencing processor with forced I/O |
US5568617A (en) | 1986-03-12 | 1996-10-22 | Hitachi, Ltd. | Processor element having a plurality of processors which communicate with each other and selectively use a common bus |
US4866664A (en) | 1987-03-09 | 1989-09-12 | Unisys Corporation | Intercomputer communication control apparatus & method |
US5142683A (en) | 1987-03-09 | 1992-08-25 | Unisys Corporation | Intercomputer communication control apparatus and method |
US5140685A (en) | 1988-03-14 | 1992-08-18 | Unisys Corporation | Record lock processing for multiprocessing data system with majority voting |
EP0379709B1 (en) | 1989-01-27 | 1995-08-23 | International Business Machines Corporation | Single-fifo high speed combining switch |
US5155854A (en) | 1989-02-03 | 1992-10-13 | Digital Equipment Corporation | System for arbitrating communication requests using multi-pass control unit based on availability of system resources |
US5155831A (en) | 1989-04-24 | 1992-10-13 | International Business Machines Corporation | Data processing system with fast queue store interposed between store-through caches and a main memory |
US5168555A (en) | 1989-09-06 | 1992-12-01 | Unisys Corporation | Initial program load control |
US5263169A (en) | 1989-11-03 | 1993-11-16 | Zoran Corporation | Bus arbitration and resource management for concurrent vector signal processor architecture |
US5173897A (en) | 1989-12-23 | 1992-12-22 | Alcatel N.V. | Method of restoring the correct cell sequence, particularly in an atm exchange, and output unit therefor |
US6195676B1 (en) | 1989-12-29 | 2001-02-27 | Silicon Graphics, Inc. | Method and apparatus for user side scheduling in a multiprocessor operating system program that implements distributive scheduling of processes |
US5751987A (en) | 1990-03-16 | 1998-05-12 | Texas Instruments Incorporated | Distributed processing memory chip with embedded logic having both data memory and broadcast memory |
US5390329A (en) | 1990-06-11 | 1995-02-14 | Cray Research, Inc. | Responding to service requests using minimal system-side context in a multiprocessor environment |
US5404482A (en) | 1990-06-29 | 1995-04-04 | Digital Equipment Corporation | Processor and method for preventing access to a locked memory block by recording a lock in a content addressable memory with outstanding cache fills |
EP0464715B1 (en) | 1990-06-29 | 1998-01-28 | Digital Equipment Corporation | Interlock queueing |
US5347648A (en) | 1990-06-29 | 1994-09-13 | Digital Equipment Corporation | Ensuring write ordering under writeback cache error conditions |
US5432918A (en) | 1990-06-29 | 1995-07-11 | Digital Equipment Corporation | Method and apparatus for ordering read and write operations using conflict bits in a write queue |
US5832215A (en) | 1990-07-10 | 1998-11-03 | Fujitsu Limited | Data gathering/scattering system for a plurality of processors in a parallel computer |
US5367678A (en) | 1990-12-06 | 1994-11-22 | The Regents Of The University Of California | Multiprocessor system having statically determining resource allocation schedule at compile time and the using of static schedule with processor signals to control the execution time dynamically |
US6223279B1 (en) | 1991-04-30 | 2001-04-24 | Kabushiki Kaisha Toshiba | Single chip microcomputer having a dedicated address bus and dedicated data bus for transferring register bank data to and from an on-line RAM |
US5255239A (en) | 1991-08-13 | 1993-10-19 | Cypress Semiconductor Corporation | Bidirectional first-in-first-out memory device with transparent and user-testable capabilities |
US5623489A (en) | 1991-09-26 | 1997-04-22 | Ipc Information Systems, Inc. | Channel allocation system for distributed digital switching network |
US5392412A (en) | 1991-10-03 | 1995-02-21 | Standard Microsystems Corporation | Data communication controller for use with a single-port data packet buffer |
US5717898A (en) | 1991-10-11 | 1998-02-10 | Intel Corporation | Cache coherency mechanism for multiprocessor computer systems |
US5392391A (en) | 1991-10-18 | 1995-02-21 | Lsi Logic Corporation | High performance graphics applications controller |
US5557766A (en) | 1991-10-21 | 1996-09-17 | Kabushiki Kaisha Toshiba | High-speed processor for handling multiple interrupts utilizing an exclusive-use bus and current and previous bank pointers to specify a return bank |
US5452437A (en) | 1991-11-18 | 1995-09-19 | Motorola, Inc. | Methods of debugging multiprocessor system |
US5613136A (en) | 1991-12-04 | 1997-03-18 | University Of Iowa Research Foundation | Locality manager having memory and independent code, bus interface logic, and synchronization components for a processing element for intercommunication in a latency tolerant multiple processor |
US5392411A (en) | 1992-02-03 | 1995-02-21 | Matsushita Electric Industrial Co., Ltd. | Dual-array register file with overlapping window registers |
US5459842A (en) | 1992-06-26 | 1995-10-17 | International Business Machines Corporation | System for combining data from multiple CPU write requests via buffers and using read-modify-write operation to write the combined data to the memory |
US5467452A (en) | 1992-07-17 | 1995-11-14 | International Business Machines Corporation | Routing control information via a bus selectively controls whether data should be routed through a switch or a bus according to number of destination processors |
WO1994015287A2 (en) | 1992-12-23 | 1994-07-07 | Centre Electronique Horloger S.A. | Multi-tasking low-power controller |
US5630130A (en) | 1992-12-23 | 1997-05-13 | Centre Electronique Horloger S.A. | Multi-tasking low-power controller having multiple program counters |
US5689722A (en) | 1993-01-22 | 1997-11-18 | University Corporation For Atmospheric Research | Multipipeline multiprocessor system |
US5404464A (en) | 1993-02-11 | 1995-04-04 | Ast Research, Inc. | Bus control system and method that selectively generate an early address strobe |
US5448702A (en) | 1993-03-02 | 1995-09-05 | International Business Machines Corporation | Adapters with descriptor queue management capability |
US6085215A (en) | 1993-03-26 | 2000-07-04 | Cabletron Systems, Inc. | Scheduling mechanism using predetermined limited execution time processing threads in a communication network |
US5517648A (en) | 1993-04-30 | 1996-05-14 | Zenith Data Systems Corporation | Symmetric multiprocessing system with unified environment and distributed system functions |
US5542070A (en) | 1993-05-20 | 1996-07-30 | Ag Communication Systems Corporation | Method for rapid development of software systems |
EP0633678B1 (en) | 1993-06-29 | 2000-07-19 | Alcatel | Resequencing method and resequencing device realizing such a method |
US5463625A (en) | 1993-09-29 | 1995-10-31 | International Business Machines Corporation | High performance machine for switched communications in a heterogeneous data processing network gateway |
US6141689A (en) | 1993-10-01 | 2000-10-31 | International Business Machines Corp. | Method and mechanism for allocating switched communications ports in a heterogeneous data processing network gateway |
US5627829A (en) | 1993-10-07 | 1997-05-06 | Gleeson; Bryan J. | Method for reducing unnecessary traffic over a computer network |
US5450351A (en) | 1993-11-19 | 1995-09-12 | International Business Machines Corporation | Content addressable memory implementation with random access memory |
US5644623A (en) | 1994-03-01 | 1997-07-01 | Safco Technologies, Inc. | Automated quality assessment system for cellular networks by using DTMF signals |
US5835755A (en) | 1994-04-04 | 1998-11-10 | At&T Global Information Solutions Company | Multi-processor computer system for operating parallel client/server database processes |
US5742782A (en) | 1994-04-15 | 1998-04-21 | Hitachi, Ltd. | Processing apparatus for executing a plurality of VLIW threads in parallel |
US5542088A (en) | 1994-04-29 | 1996-07-30 | Intergraph Corporation | Method and apparatus for enabling control of task execution |
US5721870A (en) | 1994-05-25 | 1998-02-24 | Nec Corporation | Lock control for a shared main storage data processing system |
US5544236A (en) | 1994-06-10 | 1996-08-06 | At&T Corp. | Access to unsubscribed features |
US5574922A (en) | 1994-06-17 | 1996-11-12 | Apple Computer, Inc. | Processor with sequences of processor instructions for locked memory updates |
US5781774A (en) | 1994-06-29 | 1998-07-14 | Intel Corporation | Processor having operating modes for an upgradeable multiprocessor computer system |
US5892979A (en) | 1994-07-20 | 1999-04-06 | Fujitsu Limited | Queue control apparatus including memory to save data received when capacity of queue is less than a predetermined threshold |
US5742822A (en) * | 1994-12-19 | 1998-04-21 | Nec Corporation | Multithreaded processor which dynamically discriminates a parallel execution and a sequential execution of threads |
US5550816A (en) | 1994-12-29 | 1996-08-27 | Storage Technology Corporation | Method and apparatus for virtual switching |
US5784712A (en) | 1995-03-01 | 1998-07-21 | Unisys Corporation | Method and apparatus for locally generating addressing information for a memory access |
US5649157A (en) | 1995-03-30 | 1997-07-15 | Hewlett-Packard Co. | Memory controller with priority queues |
US6112016A (en) | 1995-04-12 | 2000-08-29 | Intel Corporation | Method and apparatus for sharing a signal line between agents |
US5886992A (en) | 1995-04-14 | 1999-03-23 | Valtion Teknillinen Tutkimuskeskus | Frame synchronized ring system and method |
US6223207B1 (en) | 1995-04-24 | 2001-04-24 | Microsoft Corporation | Input/output completion port queue data structures and methods for using same |
US5592622A (en) | 1995-05-10 | 1997-01-07 | 3Com Corporation | Network intermediate system with message passing architecture |
US5761522A (en) | 1995-05-24 | 1998-06-02 | Fuji Xerox Co., Ltd. | Program control system programmable to selectively execute a plurality of programs |
EP0745933A2 (en) | 1995-06-02 | 1996-12-04 | International Business Machines Corporation | Multiple port register file with interleaved write ports |
US5828746A (en) | 1995-06-07 | 1998-10-27 | Lucent Technologies Inc. | Telecommunications network |
US5828863A (en) | 1995-06-09 | 1998-10-27 | Canon Information Systems, Inc. | Interface device connected between a LAN and a printer for outputting formatted debug information about the printer to the printer |
US5613071A (en) | 1995-07-14 | 1997-03-18 | Intel Corporation | Method and apparatus for providing remote memory access in a distributed memory multiprocessor system |
US5680641A (en) | 1995-08-16 | 1997-10-21 | Sharp Microelectronics Technology, Inc. | Multiple register bank system for concurrent I/O operation in a CPU datapath |
US5940612A (en) | 1995-09-27 | 1999-08-17 | International Business Machines Corporation | System and method for queuing of tasks in a multiprocessing system |
US5689566A (en) | 1995-10-24 | 1997-11-18 | Nguyen; Minhtam C. | Network with secure communications sessions |
US5809530A (en) | 1995-11-13 | 1998-09-15 | Motorola, Inc. | Method and apparatus for processing multiple cache misses using reload folding and store merging |
US5659687A (en) | 1995-11-30 | 1997-08-19 | Electronics & Telecommunications Research Institute | Device for controlling memory data path in parallel processing computer system |
US5796413A (en) | 1995-12-06 | 1998-08-18 | Compaq Computer Corporation | Graphics controller utilizing video memory to provide macro command capability and enhanched command buffering |
US5940866A (en) | 1995-12-13 | 1999-08-17 | International Business Machines Corporation | Information handling system having a local address queue for local storage of command blocks transferred from a host processing side |
US5699537A (en) | 1995-12-22 | 1997-12-16 | Intel Corporation | Processor microarchitecture for efficient dynamic scheduling and execution of chains of dependent instructions |
US6058168A (en) | 1995-12-29 | 2000-05-02 | Tixi.Com Gmbh Telecommunication Systems | Method and microcomputer system for the automatic, secure and direct transmission of data |
US6201807B1 (en) | 1996-02-27 | 2001-03-13 | Lucent Technologies | Real-time hardware method and apparatus for reducing queue processing |
US5761507A (en) | 1996-03-05 | 1998-06-02 | International Business Machines Corporation | Client/server architecture supporting concurrent servers within a server with a transaction manager providing server/connection decoupling |
US5809235A (en) | 1996-03-08 | 1998-09-15 | International Business Machines Corporation | Object oriented network event management framework |
US5784649A (en) | 1996-03-13 | 1998-07-21 | Diamond Multimedia Systems, Inc. | Multi-threaded FIFO pool buffer and bus transfer control system |
US5797043A (en) | 1996-03-13 | 1998-08-18 | Diamond Multimedia Systems, Inc. | System for managing the transfer of data between FIFOs within pool memory and peripherals being programmable with identifications of the FIFOs |
US6199133B1 (en) | 1996-03-29 | 2001-03-06 | Compaq Computer Corporation | Management communication bus for networking devices |
US5890208A (en) | 1996-03-30 | 1999-03-30 | Samsung Electronics Co., Ltd. | Command executing method for CD-ROM disk drive |
WO1997038372A1 (en) | 1996-04-04 | 1997-10-16 | Videologic Limited | A data processing management system |
US6266760B1 (en) * | 1996-04-11 | 2001-07-24 | Massachusetts Institute Of Technology | Intermediate-grain reconfigurable processing device |
EP0809180B1 (en) | 1996-05-22 | 2004-07-28 | Seiko Epson Corporation | Data processing circuit, microcomputer, and electronic equipment |
US5946487A (en) | 1996-06-10 | 1999-08-31 | Lsi Logic Corporation | Object-oriented multi-media architecture |
US5958031A (en) | 1996-06-25 | 1999-09-28 | Samsung Electronics Co., Ltd. | Data transmitting/receiving device of a multiprocessor system and method therefor |
US6012151A (en) | 1996-06-28 | 2000-01-04 | Fujitsu Limited | Information processing apparatus and distributed processing control method |
US5937187A (en) | 1996-07-01 | 1999-08-10 | Sun Microsystems, Inc. | Method and apparatus for execution and preemption control of computer process entities |
US6023742A (en) | 1996-07-18 | 2000-02-08 | University Of Washington | Reconfigurable computing architecture for providing pipelined data paths |
US5745913A (en) | 1996-08-05 | 1998-04-28 | Exponential Technology, Inc. | Multi-processor DRAM controller that prioritizes row-miss requests to stale banks |
US5978838A (en) | 1996-08-19 | 1999-11-02 | Samsung Electronics Co., Ltd. | Coordination and synchronization of an asymmetric, single-chip, dual multiprocessor |
US5913059A (en) | 1996-08-30 | 1999-06-15 | Nec Corporation | Multi-processor system for inheriting contents of register from parent thread to child thread |
US5812868A (en) | 1996-09-16 | 1998-09-22 | Motorola Inc. | Method and apparatus for selecting a register file in a data processing system |
US6072781A (en) | 1996-10-22 | 2000-06-06 | International Business Machines Corporation | Multi-tasking adapter for parallel network applications |
US5860158A (en) | 1996-11-15 | 1999-01-12 | Samsung Electronics Company, Ltd. | Cache control unit with a cache request transaction-oriented protocol |
US5905876A (en) | 1996-12-16 | 1999-05-18 | Intel Corporation | Queue ordering for memory and I/O transactions in a multiple concurrent transaction computer system |
US6212542B1 (en) | 1996-12-16 | 2001-04-03 | International Business Machines Corporation | Method and system for executing a program within a multiscalar processor by processing linked thread descriptors |
US6430626B1 (en) | 1996-12-30 | 2002-08-06 | Compaq Computer Corporation | Network switch with a multiple bus structure and a bridge interface for transferring network data between different buses |
US6073159A (en) | 1996-12-31 | 2000-06-06 | Compaq Computer Corporation | Thread properties attribute vector based thread selection in multithreading processor |
US5854922A (en) | 1997-01-16 | 1998-12-29 | Ford Motor Company | Micro-sequencer apparatus and method of combination state machine and instruction memory |
US5961628A (en) | 1997-01-28 | 1999-10-05 | Samsung Electronics Co., Ltd. | Load and store unit for a vector processor |
US6552826B2 (en) | 1997-02-21 | 2003-04-22 | Worldquest Network, Inc. | Facsimile network |
US5742587A (en) | 1997-02-28 | 1998-04-21 | Lanart Corporation | Load balancing port switching hub |
US5905889A (en) | 1997-03-20 | 1999-05-18 | International Business Machines Corporation | Resource management system using next available integer from an integer pool and returning the integer thereto as the next available integer upon completion of use |
US6298370B1 (en) | 1997-04-04 | 2001-10-02 | Texas Instruments Incorporated | Computer operating process allocating tasks between first and second processors at run time based upon current processor load |
US5983274A (en) | 1997-05-08 | 1999-11-09 | Microsoft Corporation | Creation and use of control information associated with packetized network data by protocol drivers and device drivers |
US6141765A (en) | 1997-05-19 | 2000-10-31 | Gigabus, Inc. | Low power, high speed communications bus |
US6289011B1 (en) | 1997-05-21 | 2001-09-11 | Samsung Electronics Co., Ltd. | 2n×n multiplexing switch |
US6182177B1 (en) | 1997-06-13 | 2001-01-30 | Intel Corporation | Method and apparatus for maintaining one or more queues of elements such as commands using one or more token queues |
US6092158A (en) | 1997-06-13 | 2000-07-18 | Intel Corporation | Method and apparatus for arbitrating between command streams |
US6006321A (en) * | 1997-06-13 | 1999-12-21 | Malleable Technologies, Inc. | Programmable logic datapath that may be used in a field programmable device |
US6067585A (en) | 1997-06-23 | 2000-05-23 | Compaq Computer Corporation | Adaptive interface controller that can operate with segments of different protocol and transmission rates in a single integrated device |
US6393483B1 (en) | 1997-06-30 | 2002-05-21 | Adaptec, Inc. | Method and apparatus for network interface card load balancing and port aggregation |
US6426940B1 (en) | 1997-06-30 | 2002-07-30 | Samsung Electronics, Co. Ltd. | Large scaled fault tolerant ATM switch and a self-routing method in a 2N×N multiplexing switch |
US5938736A (en) | 1997-06-30 | 1999-08-17 | Sun Microsystems, Inc. | Search engine architecture for a high performance multi-layer switch element |
US5887134A (en) | 1997-06-30 | 1999-03-23 | Sun Microsystems | System and method for preserving message order while employing both programmed I/O and DMA operations |
US6247025B1 (en) | 1997-07-17 | 2001-06-12 | International Business Machines Corporation | Locking and unlocking mechanism for controlling concurrent access to objects |
US6170051B1 (en) * | 1997-08-01 | 2001-01-02 | Micron Technology, Inc. | Apparatus and method for program level parallelism in a VLIW processor |
US6014729A (en) | 1997-09-29 | 2000-01-11 | Firstpass, Inc. | Shared memory arbitration apparatus and method |
US6085294A (en) | 1997-10-24 | 2000-07-04 | Compaq Computer Corporation | Distributed data dependency stall mechanism |
US5915123A (en) | 1997-10-31 | 1999-06-22 | Silicon Spice | Method and apparatus for controlling configuration memory contexts of processing elements in a network of multiple context processing elements |
US6360262B1 (en) | 1997-11-24 | 2002-03-19 | International Business Machines Corporation | Mapping web server objects to TCP/IP ports |
US6070231A (en) | 1997-12-02 | 2000-05-30 | Intel Corporation | Method and apparatus for processing memory requests that require coherency transactions |
US6144669A (en) | 1997-12-12 | 2000-11-07 | Newbridge Networks Corporation | Prioritized PVC management queues for improved frame processing capabilities |
US5948081A (en) | 1997-12-22 | 1999-09-07 | Compaq Computer Corporation | System for flushing queued memory write request corresponding to a queued read request and all prior write requests with counter indicating requests to be flushed |
US6345334B1 (en) | 1998-01-07 | 2002-02-05 | Nec Corporation | High speed semiconductor memory device capable of changing data sequence for burst transmission |
US6134665A (en) | 1998-01-20 | 2000-10-17 | Digital Equipment Corporation | Computer with remote wake up and transmission of a status packet when the computer fails a self test |
US6145054A (en) | 1998-01-21 | 2000-11-07 | Sun Microsystems, Inc. | Apparatus and method for handling multiple mergeable misses in a non-blocking cache |
US6415338B1 (en) | 1998-02-11 | 2002-07-02 | Globespan, Inc. | System for writing a data value at a starting address to a number of consecutive locations equal to a segment length identifier |
US5970013A (en) | 1998-02-26 | 1999-10-19 | Lucent Technologies Inc. | Adaptive addressable circuit redundancy method and apparatus with broadcast write |
US6279113B1 (en) | 1998-03-16 | 2001-08-21 | Internet Tools, Inc. | Dynamic signature inspection-based network intrusion detection |
US6223238B1 (en) | 1998-03-31 | 2001-04-24 | Micron Electronics, Inc. | Method of peer-to-peer mastering over a computer bus |
US6079008A (en) | 1998-04-03 | 2000-06-20 | Patton Electronics Co. | Multiple thread multiple data predictive coded parallel processing system and method |
US6216220B1 (en) | 1998-04-08 | 2001-04-10 | Hyundai Electronics Industries Co., Ltd. | Multithreaded data processing method with long latency subinstructions |
US6092127A (en) | 1998-05-15 | 2000-07-18 | Hewlett-Packard Company | Dynamic allocation and reallocation of buffers in links of chained DMA operations by receiving notification of buffer full and maintaining a queue of buffers available |
US6275505B1 (en) | 1998-05-30 | 2001-08-14 | Alcatel Canada Inc. | Method and apparatus for packetizing data into a data stream |
US6067300A (en) * | 1998-06-11 | 2000-05-23 | Cabletron Systems, Inc. | Method and apparatus for optimizing the transfer of data packets between local area networks |
US6157955A (en) | 1998-06-15 | 2000-12-05 | Intel Corporation | Packet processing system including a policy engine having a classification unit |
US6272616B1 (en) | 1998-06-17 | 2001-08-07 | Agere Systems Guardian Corp. | Method and apparatus for executing multiple instruction streams in a digital processor with multiple data paths |
US6434145B1 (en) | 1998-06-22 | 2002-08-13 | Applied Micro Circuits Corporation | Processing of network data by parallel processing channels |
US6373848B1 (en) | 1998-07-28 | 2002-04-16 | International Business Machines Corporation | Architecture for a multi-port adapter with a single media access control (MAC) |
US6073215A (en) | 1998-08-03 | 2000-06-06 | Motorola, Inc. | Data processing system having a data prefetch mechanism and method therefor |
US6160562A (en) | 1998-08-18 | 2000-12-12 | Compaq Computer Corporation | System and method for aligning an initial cache line of data read from local memory by an input/output device |
US6356962B1 (en) | 1998-09-30 | 2002-03-12 | Stmicroelectronics, Inc. | Network device and method of controlling flow of data arranged in frames in a data-based network |
US6347344B1 (en) | 1998-10-14 | 2002-02-12 | Hitachi, Ltd. | Integrated multimedia system with local processor, data transfer switch, processing modules, fixed functional unit, data streamer, interface unit and multiplexer, all integrated on multimedia processor |
US6212611B1 (en) | 1998-11-03 | 2001-04-03 | Intel Corporation | Method and apparatus for providing a pipelined memory controller |
US6718457B2 (en) | 1998-12-03 | 2004-04-06 | Sun Microsystems, Inc. | Multiple-thread processor for threaded software applications |
US6389449B1 (en) | 1998-12-16 | 2002-05-14 | Clearwater Networks, Inc. | Interstream control and communications for multi-streaming digital processors |
US6327650B1 (en) * | 1999-02-12 | 2001-12-04 | Vsli Technology, Inc. | Pipelined multiprocessing with upstream processor concurrently writing to local register and to register of downstream processor |
US6256713B1 (en) | 1999-04-29 | 2001-07-03 | International Business Machines Corporation | Bus optimization with read/write coherence including ordering responsive to collisions |
US6745317B1 (en) * | 1999-07-30 | 2004-06-01 | Broadcom Corporation | Three level direct communication connections between neighboring multiple context processing elements |
WO2001015718A1 (en) | 1999-08-27 | 2001-03-08 | Cheil Jedang Corporation | Extracts derived from pueraria mirifica, butea superba and/or mucuna collettii and extraction thereof |
US20030145159A1 (en) | 1999-08-31 | 2003-07-31 | Intel Corporation, A Delaware Corporation | SRAM controller for parallel processor architecture |
WO2001016782A3 (en) | 1999-08-31 | 2001-05-31 | Intel Corp | Parallel processor architecture |
WO2001016770A1 (en) | 1999-08-31 | 2001-03-08 | Intel Corporation | Sdram controller for parallel processor architecture |
US6427196B1 (en) | 1999-08-31 | 2002-07-30 | Intel Corporation | SRAM controller for parallel processor architecture including address and command queue and arbiter |
US20040073778A1 (en) | 1999-08-31 | 2004-04-15 | Adiletta Matthew J. | Parallel processor architecture |
US20040054880A1 (en) | 1999-08-31 | 2004-03-18 | Intel Corporation, A California Corporation | Microengine for parallel processor architecture |
US6668317B1 (en) | 1999-08-31 | 2003-12-23 | Intel Corporation | Microengine for parallel processor architecture |
WO2001016769A9 (en) | 1999-08-31 | 2002-09-12 | Intel Corp | Sram controller for parallel processor architecture |
US6606704B1 (en) | 1999-08-31 | 2003-08-12 | Intel Corporation | Parallel multithreaded processor with plural microengines executing multiple threads each microengine having loadable microcode |
US6587906B2 (en) | 1999-12-22 | 2003-07-01 | Intel Corporation | Parallel multi-threaded processing |
US6532509B1 (en) | 1999-12-22 | 2003-03-11 | Intel Corporation | Arbitrating command requests in a parallel multi-threaded processing system |
US6694380B1 (en) | 1999-12-27 | 2004-02-17 | Intel Corporation | Mapping requests from a processing unit that uses memory-mapped input-output space |
US6307789B1 (en) | 1999-12-28 | 2001-10-23 | Intel Corporation | Scratchpad memory |
US20040098496A1 (en) | 1999-12-28 | 2004-05-20 | Intel Corporation, A California Corporation | Thread signaling in multi-threaded network processor |
WO2001048619A3 (en) | 1999-12-28 | 2002-11-14 | Intel Corp | Distributed memory control and bandwidth optimization |
US6324624B1 (en) | 1999-12-28 | 2001-11-27 | Intel Corporation | Read lock miss control and queue management |
US20040109369A1 (en) | 1999-12-28 | 2004-06-10 | Intel Corporation, A California Corporation | Scratchpad memory |
US6625654B1 (en) | 1999-12-28 | 2003-09-23 | Intel Corporation | Thread signaling in multi-threaded network processor |
WO2001048606A3 (en) | 1999-12-28 | 2002-07-11 | Intel Corp | Allocation of data to threads in multi-threaded network processor |
US6577542B2 (en) | 1999-12-28 | 2003-06-10 | Intel Corporation | Scratchpad memory |
US6667920B2 (en) | 1999-12-28 | 2003-12-23 | Intel Corporation | Scratchpad memory |
US20040073728A1 (en) | 1999-12-28 | 2004-04-15 | Intel Corporation, A California Corporation | Optimizations to receive packet status from FIFO bus |
US6631430B1 (en) | 1999-12-28 | 2003-10-07 | Intel Corporation | Optimizations to receive packet status from fifo bus |
WO2001048596A9 (en) | 1999-12-28 | 2002-07-04 | Intel Corp | Read lock miss control in a multithreaded environment |
US6560667B1 (en) | 1999-12-28 | 2003-05-06 | Intel Corporation | Handling contiguous memory references in a multi-queue system |
US6681300B2 (en) | 1999-12-28 | 2004-01-20 | Intel Corporation | Read lock miss control and queue management |
US6463072B1 (en) | 1999-12-28 | 2002-10-08 | Intel Corporation | Method and apparatus for sharing access to a bus |
US6661794B1 (en) | 1999-12-29 | 2003-12-09 | Intel Corporation | Method and apparatus for gigabit packet assignment for multithreaded packet processing |
US20040071152A1 (en) | 1999-12-29 | 2004-04-15 | Intel Corporation, A Delaware Corporation | Method and apparatus for gigabit packet assignment for multithreaded packet processing |
WO2001050679A3 (en) | 1999-12-29 | 2002-01-17 | Intel Corp | Method and apparatus for gigabit packet assignment for multithreaded packet processing |
US6584522B1 (en) | 1999-12-30 | 2003-06-24 | Intel Corporation | Communication between processors |
US20040039895A1 (en) | 2000-01-05 | 2004-02-26 | Intel Corporation, A California Corporation | Memory shared between processing threads |
US6631462B1 (en) | 2000-01-05 | 2003-10-07 | Intel Corporation | Memory shared between processing threads |
WO2001050247A3 (en) | 2000-01-05 | 2002-01-31 | Intel Corp | Memory shared between processing threads |
EP1148414B1 (en) | 2000-03-30 | 2005-12-21 | Agere Systems Guardian Corporation | Method and apparatus for allocating functional units in a multithreaded VLIW processor |
WO2001095101A3 (en) | 2000-06-02 | 2002-03-21 | Sun Microsystems Inc | Synchronizing partially pipelined instructions in vliw processors |
US6665755B2 (en) * | 2000-12-22 | 2003-12-16 | Nortel Networks Limited | External memory engine selectable pipeline architecture |
US20020116587A1 (en) | 2000-12-22 | 2002-08-22 | Modelski Richard P. | External memory engine selectable pipeline architecture |
US20030067913A1 (en) | 2001-10-05 | 2003-04-10 | International Business Machines Corporation | Programmable storage network protocol handler architecture |
US20030135351A1 (en) | 2002-01-17 | 2003-07-17 | Wilkinson Hugh M. | Functional pipelines |
Non-Patent Citations (26)
Title |
---|
Byrd et al., "Multithread Processor Architectures," IEEE Spectrum, vol. 32, No. 8, New York, Aug. 1, 1995, pp. 38-46. |
Doyle et al., Microsoft Press Computer Dictionary, 2<SUP>nd </SUP>ed., Microsoft Press, Redmond, Washington, USA, 1994, p. 326. |
Doyle et al., Microsoft Press Computer Dictionary, 2nd ed., Microsoft Press, Redmond, Washington, USA, 1994, p. 326. |
Fillo et al., "The M-Machine Multicomputer," IEEE Proceedings of MICRO-28, 1995, pp. 146-156. |
Gomez et al., "Efficient Multithreaded User-Space Transport for Network Computing: Design and Test of the TRAP Protocol," Journal of Parallel and Distributed Computing, Academic Press, Duluth, Minnesota, USA, vol. 40, No. 1, Jan. 10, 1997, pp. 103-117. |
Haug et al., "Reconfigurable hardware as shared resource for parallel threads," IEEE Symposium on FPGAs for Custom Computing Machines, 1998. |
Haug et al., "Reconfigurable hardware as shared resource for parallel threads," IEEE Symposium on FPGAs for Custom Computing Machines, 1998. |
Hauser et al., "Garp: a MIPS processor with a reconfigurable coprocessor," Proceedings of the 5<SUP>th </SUP>Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 1997. |
Hauser et al., "Garp: a MIPS processor with a reconfigurable coprocessor," Proceedings of the 5th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 1997. |
Hyde, R., "Overview of Memory Management," Byte, vol. 13, No. 4, 1998, pp. 219-225. |
International Search Report from PCT/US03/01578; mailed Feb. 19, 2004 (4 pages). |
International Search Report from PCT/US03/01580; mailed Apr. 21, 2004. (4 pages). |
Litch et al., "StrongARMing Portable Communications," IEEE Micro, 1998, pp. 48-55. |
Moors, et al., "Cascading Content-Addressable Memories", IEEE Micro, 12(3):56-66 (1992). |
Schmidt et al., "The Performance of Alternative Threading Architectures for Parallel Communication Subsytems," Internet Document, Online!, Nov. 13, 1998. |
Shah, Niraj, "Understanding Network Processors", Masters Thesis Submitted to the University of California, Berkeley, Sep. 4, 2001. |
Thistle et al., "A Processor Architecture for Horizon," IEEE, 1998, pp. 35-41. |
Tremblay et al., "A Three Dimensional Register File for Superscalar Processors," IEEE Proceedings of the 28<SUP>th </SUP>Annual Hawaii International Conference on System Sciences, 1995, pp. 191-201. |
Tremblay et al., "A Three Dimensional Register File for Superscalar Processors," IEEE Proceedings of the 28th Annual Hawaii International Conference on System Sciences, 1995, pp. 191-201. |
Trimberger et al, "A time-multiplexed FPGA," Proceedings of the 5<SUP>th </SUP>Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 1998. |
Trimberger et al, "A time-multiplexed FPGA," Proceedings of the 5th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 1998. |
Turner et al., "Design of a High Performance Active Router," Internet Document, Online, Mar. 18, 1999. |
U.S. Appl. No. 09/473,571, filed Dec. 28, 1999, Wolrich et al. |
U.S. Appl. No. 09/475,614, filed Dec. 30, 1999, Wolrich et al. |
Vibhatavanijt et al., "Simultaneous Multithreading-Based Routers," Proceedings of the 2000 International Conference of Parallel Processing, Toronto, Ontario, Canada, Aug. 21-24, 2000, pp. 362-359. |
Wazlowski et al., "PRSIM-II computer and architecture," IEEE Proceedings, Workshop on FPGAs for Custom Computing Machines, 1993. |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7546444B1 (en) | 1999-09-01 | 2009-06-09 | Intel Corporation | Register set used in multithreaded parallel processor architecture |
US7991983B2 (en) | 1999-09-01 | 2011-08-02 | Intel Corporation | Register set used in multithreaded parallel processor architecture |
US7421572B1 (en) | 1999-09-01 | 2008-09-02 | Intel Corporation | Branch instruction for processor with branching dependent on a specified bit in a register |
US20020056037A1 (en) * | 2000-08-31 | 2002-05-09 | Gilbert Wolrich | Method and apparatus for providing large register address space while maximizing cycletime performance for a multi-threaded register file set |
US20070234009A1 (en) * | 2000-08-31 | 2007-10-04 | Intel Corporation | Processor having a dedicated hash unit integrated within |
US7743235B2 (en) | 2000-08-31 | 2010-06-22 | Intel Corporation | Processor having a dedicated hash unit integrated within |
US7681018B2 (en) | 2000-08-31 | 2010-03-16 | Intel Corporation | Method and apparatus for providing large register address space while maximizing cycletime performance for a multi-threaded register file set |
US20020053017A1 (en) * | 2000-09-01 | 2002-05-02 | Adiletta Matthew J. | Register instructions for a multithreaded processor |
US7437724B2 (en) * | 2002-04-03 | 2008-10-14 | Intel Corporation | Registers for data transfers |
US20030191866A1 (en) * | 2002-04-03 | 2003-10-09 | Gilbert Wolrich | Registers for data transfers |
US9330060B1 (en) * | 2003-04-15 | 2016-05-03 | Nvidia Corporation | Method and device for encoding and decoding video image data |
US20070140282A1 (en) * | 2005-12-21 | 2007-06-21 | Sridhar Lakshmanamurthy | Managing on-chip queues in switched fabric networks |
US20090106187A1 (en) * | 2007-10-18 | 2009-04-23 | Nec Corporation | Information processing apparatus having process units operable in parallel |
US8140503B2 (en) * | 2007-10-18 | 2012-03-20 | Nec Corporation | Information processing apparatus having process units operable in parallel |
US20110224549A1 (en) * | 2008-11-14 | 2011-09-15 | Hitachi Medical Corporation | Ultrasonic diagnostic apparatus and method for generating ultrasonic images |
US8127262B1 (en) * | 2008-12-18 | 2012-02-28 | Xilinx, Inc. | Communicating state data between stages of pipelined packet processor |
US10353826B2 (en) * | 2017-07-14 | 2019-07-16 | Arm Limited | Method and apparatus for fast context cloning in a data processing system |
US10467159B2 (en) | 2017-07-14 | 2019-11-05 | Arm Limited | Memory node controller |
US10489304B2 (en) | 2017-07-14 | 2019-11-26 | Arm Limited | Memory address translation |
US10534719B2 (en) | 2017-07-14 | 2020-01-14 | Arm Limited | Memory system for a data processing network |
US10565126B2 (en) | 2017-07-14 | 2020-02-18 | Arm Limited | Method and apparatus for two-layer copy-on-write |
US10592424B2 (en) | 2017-07-14 | 2020-03-17 | Arm Limited | Range-based memory system |
US10613989B2 (en) | 2017-07-14 | 2020-04-07 | Arm Limited | Fast address translation for virtual machines |
US10884850B2 (en) | 2018-07-24 | 2021-01-05 | Arm Limited | Fault tolerant memory system |
Also Published As
Publication number | Publication date |
---|---|
AU2003209290A1 (en) | 2003-09-02 |
CA2473551C (en) | 2009-01-06 |
TWI231914B (en) | 2005-05-01 |
CN1820253A (en) | 2006-08-16 |
EP1481323B1 (en) | 2007-10-10 |
CN100440151C (en) | 2008-12-03 |
TW200307214A (en) | 2003-12-01 |
CA2473551A1 (en) | 2003-08-07 |
US20030145173A1 (en) | 2003-07-31 |
KR100613923B1 (en) | 2006-08-18 |
DE60316774T2 (en) | 2008-08-28 |
DE60316774D1 (en) | 2007-11-22 |
ATE375552T1 (en) | 2007-10-15 |
KR20040017251A (en) | 2004-02-26 |
WO2003065207A3 (en) | 2004-05-27 |
EP1481323A2 (en) | 2004-12-01 |
WO2003065207A2 (en) | 2003-08-07 |
HK1072298A1 (en) | 2005-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7181594B2 (en) | Context pipelines | |
US7437724B2 (en) | Registers for data transfers | |
US6671827B2 (en) | Journaling for parallel hardware threads in multithreaded processor | |
EP1236088B9 (en) | Register set used in multithreaded parallel processor architecture | |
US7546444B1 (en) | Register set used in multithreaded parallel processor architecture | |
US6944850B2 (en) | Hop method for stepping parallel hardware threads | |
CA2391833C (en) | Parallel processor architecture | |
US6934951B2 (en) | Parallel processor with functional pipeline providing programming engines by supporting multiple contexts and critical section | |
EP1247168B1 (en) | Memory shared between processing threads | |
US7240164B2 (en) | Folding for a multi-threaded network processor | |
US7376950B2 (en) | Signal aggregation | |
US7191309B1 (en) | Double shift instruction for micro engine used in multithreaded parallel processor architecture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTEL CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WILKINSON, HUGH M., III;ROSENBLUTH, MARK B.;ADILETTA, MATTHEW J.;AND OTHERS;REEL/FRAME:012910/0733 Effective date: 20020422 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20190220 |
|
AS | Assignment |
Owner name: VENTURE LENDING & LEASING IX, INC., CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:CLOUDLEAF, INC.;REEL/FRAME:051139/0777 Effective date: 20191122 Owner name: VENTURE LENDING & LEASING VIII, INC., CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:CLOUDLEAF, INC.;REEL/FRAME:051139/0777 Effective date: 20191122 |
|
AS | Assignment |
Owner name: TAHOE RESEARCH, LTD., IRELAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTEL CORPORATION;REEL/FRAME:061827/0686 Effective date: 20220718 |
|
AS | Assignment |
Owner name: WTI FUND X, INC., CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:PARKOURSC, INC., PREVIOUSLY KNOWN AS CLOUDLEAF, INC.;REEL/FRAME:063136/0153 Effective date: 20230324 |