US7370002B2 - Modifying advertisement scores based on advertisement response probabilities - Google Patents
Modifying advertisement scores based on advertisement response probabilities Download PDFInfo
- Publication number
- US7370002B2 US7370002B2 US10/163,056 US16305602A US7370002B2 US 7370002 B2 US7370002 B2 US 7370002B2 US 16305602 A US16305602 A US 16305602A US 7370002 B2 US7370002 B2 US 7370002B2
- Authority
- US
- United States
- Prior art keywords
- advertisement
- probability
- response
- advertisements
- score
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 230000004044 response Effects 0.000 title claims abstract description 162
- 230000003247 decreasing effect Effects 0.000 claims abstract description 16
- 238000003066 decision tree Methods 0.000 claims description 55
- 238000000034 method Methods 0.000 claims description 35
- 230000007423 decrease Effects 0.000 claims description 10
- 238000004590 computer program Methods 0.000 claims description 5
- 230000008685 targeting Effects 0.000 claims 1
- 238000004891 communication Methods 0.000 description 17
- 238000013459 approach Methods 0.000 description 12
- 230000004075 alteration Effects 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 4
- 238000010809 targeting technique Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000005055 memory storage Effects 0.000 description 3
- 230000006855 networking Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920001690 polydopamine Polymers 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0201—Market modelling; Market analysis; Collecting market data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0201—Market modelling; Market analysis; Collecting market data
- G06Q30/0204—Market segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0242—Determining effectiveness of advertisements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0251—Targeted advertisements
- G06Q30/0254—Targeted advertisements based on statistics
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0251—Targeted advertisements
- G06Q30/0269—Targeted advertisements based on user profile or attribute
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0277—Online advertisement
Definitions
- the present invention relates to targeted advertising. More specifically, the present invention relates to systems, methods, and computer program products for modifying an advertisement score based on a probability that a user will respond to the advertisement, the advertisement score being indicative of whether the advertisement should be presented.
- Advertisers often present advertisements to users of networked computer systems (e.g., Internet-connected computer systems) in hopes that the users of the networked computer systems will become interested in the advertised products. At times, advertisers may present advertisements that are viewed by users and as a result generate user interest in the advertised product. However, at other times, and perhaps more frequently, viewed advertisements generate little, if any, user interest in advertised products. In some cases, users simply ignore advertisements, not viewing them at all.
- networked computer systems e.g., Internet-connected computer systems
- targeting techniques have been developed to “target” users on a computer network. These targeting techniques are designed to present advertisements that, if viewed, have increased chances of generating user interest in an advertised product.
- Conventional targeting techniques often associate advertisements with advertisement scores, where advertisements with higher scores are presented to a user before advertisements with lower scores.
- An advertising server may generate a score for a number of advertisements and then present the advertisements with the higher scores to a user.
- An advertisement server may use deterministic rules when generating advertisement scores. Each advertisement may begin with a base score that is modified as successive rules are applied. A deterministic rule may be, for example, “if a user is less than age 30, then increase the score for this advertisement.” The advertisement server may access user data, for example, data contained in a user profile, to determine how rules are applied. If the advertisement server accessed user data indicating that a particular user is age 25, application of the previous rule would result in an increase in associated advertisement scores.
- a series of rules may be applied based on different portions of user data, for example, age, sex, and income, to cause an advertisement score for a particular group of users to be increased or decreased. This is beneficial, as an advertiser may configure a series of rules to increase advertisement scores for particular groups of users the advertiser believes are more likely to be interested in a particular product. Likewise, an advertiser may configure a series of rules to decrease advertisement scores for particular groups of users the advertiser believes are less likely to be interested in a particular product.
- Current targeting techniques are beneficial for increasing the chances of presenting advertisements that will generate user interest.
- current targeting techniques fail to consider the probability that a potentially interested user will actually respond to an advertisement by buying the advertised product or selecting the advertisement (“clicking through”) to view additional information. For example, it may be that a user is interested in an advertised product but for some reason has a decreased probability of responding to an advertisement associated with the product. Presenting advertisements to users who have decreased probabilities of responding to the advertisements results in inefficient use of advertisement server resources. Additionally, a user with a reduced probability for responding to an advertisement may find presentation of such an advertisement undesirable.
- the principles of the present invention provide for utilizing response probabilities, such as, for example, buying an advertised product or selecting an advertisement to view additional information, to modify a score that indicates whether or not to present the advertisement to the user.
- Advertisements may be accessed from a list or database of possible advertisements or may be received as input from an advertisement pipeline.
- Each advertisement is associated with a probabilistic predictive model that maps a set of advertisement recipient attribute-values to a response (or click) probability.
- the probabilistic predictive model utilizes a decision tree, where each node in the decision tree is logically attached to one or more other nodes. A root node is attached to other nodes (intermediate nodes and/or leaf nodes) that are directly beneath the root node.
- Intermediate nodes are attached to a node (root node or other intermediate node) that is directly above the intermediate node and to other nodes (intermediate nodes and/or leaf nodes) that are directly beneath the intermediate node.
- Leaf nodes are attached to a node (root node or intermediate node) that is directly above the leaf node.
- Each root node and intermediate node may include decision logic that causes another intermediate node or leaf node beneath the root node or intermediate node to be accessed. Decision logic may cause another node to be accessed based on user information, such as age, sex, or occupation of a user. For example, a root node may include decision logic to access a first intermediate node if a user's age is less than 18 and to access a second intermediate node if a user's age is 18 or greater. Decision logic may be configured so that a series of intermediate nodes are accessed before reaching a leaf node.
- a response probability for each advertisement in the plurality of possible advertisements is determined.
- a response probability may represent a probability that a user will buy a product or select an advertisement by “clicking” on the advertisement.
- a decision tree may be utilized to determine response probabilities for advertisements. Starting at the root node and continuing through one or more intermediate nodes, decision logic may analyze user information associated with a user, such as information from a user profile, and cause a leaf node to be accessed. Each leaf node may store a probability value between zero and one. Zero represents that a user will never respond to an advertisement and one represents that a user will always respond to an advertisement. A probability of 0.18, for example, may represent an 18% chance that a user will respond to an advertisement.
- the accessed leaf node may include a value that represents the probability that the user associated with the analyzed user information would respond to the advertisement.
- a user profile may contain the following information for a user: age-18, sex-male, and occupation-student.
- a decision tree for a particular advertisement may be utilized to determine the probability that the user associated with the user profile would respond to the particular advertisement.
- Decision logic at a root node may analyze age information to cause one of a plurality of first intermediate nodes to be accessed. For users who are age 18, a particular first intermediate node may be accessed.
- Decision logic at the particular first intermediate node may analyze sex information to cause one of a plurality of second intermediate nodes to be accessed.
- Decision logic at the particular second intermediate node may analyze occupation information to cause one of a plurality of leaf nodes to be accessed. For users who are students, a particular leaf node may be accessed.
- the particular leaf node may include the probability that an 18-year-old male student would respond to the particular advertisement.
- a score associated with each of the possible advertisements is altered.
- the score for each advertisement may be a score that indicates whether or not to present the advertisement to the user.
- a score may be received from an external module that is part of an advertisement pipeline.
- the mean probability for responding to an advertisement i.e. a possible weighted average of the probabilities of all the leaf nodes in a decision tree
- the deviation of a particular leaf node's probability from the mean probability may be indicative of how a score is to be altered.
- a score may be multiplied by a value that decreases the score of the advertisement.
- the chance of presenting an advertisement to a user is decreased where the probability that the user will respond to the advertisement is below average.
- a score may be multiplied by a value that increases the score of the advertisement.
- the chance of presenting an advertisement to a user is increased where the probability that the user will respond to the advertisement is above average.
- Different ranges of deviation e.g. some number of standard deviations from the mean
- Multiplicative factors for altering a score may be calculated from values in a decision tree and/or may be user-configurable.
- Modifying advertisement scores based on response probabilities increases the chances of presenting advertisements a user will respond to and decreases the chances of presenting advertisements a user will not respond to. This promotes conservation of resources in computer systems that present advertisements, as there is a decreased chance such resources will be used to present advertisements that will not be responded to. Further, the chances of presenting undesirable advertisements to a user are also decreased.
- FIG. 1 illustrates an example of a computer system that provides a suitable operating environment for the present invention.
- FIG. 2 illustrates an example of some of the functional components that may facilitate modifying advertisement scores based on response probabilities.
- FIG. 3 is a flow diagram illustrating an example of a method for modifying advertisement scores based on response probabilities.
- FIG. 4 illustrates an example of a decision tree.
- FIG. 5 illustrates an example of response probability values divided into different regions.
- the present invention extends to systems, methods, and computer program products for modifying advertisement scores based on response probabilities.
- a plurality of advertisements is accessed and a response probability for each advertisement in the plurality is determined.
- An associated advertisement score for each advertisement is modified based on the corresponding response probability for each advertisement.
- the embodiments of the present invention may comprise a general-purpose or special-purpose computer system including various computer hardware components, which are discussed in greater detail below.
- Embodiments within the scope of the present invention also include computer-readable media for carrying or having computer-executable instructions, computer-readable instructions, or data structures stored thereon.
- Such computer-readable media may be any available media, which is accessible by a general-purpose or special-purpose computer system.
- such computer-readable media can comprise physical storage media such as RAM, ROM, EPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other media which can be used to carry or store desired program code means in the form of computer-executable instructions, computer-readable instructions, or data structures and which may be accessed by a general-purpose or special-purpose computer system.
- physical storage media such as RAM, ROM, EPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other media which can be used to carry or store desired program code means in the form of computer-executable instructions, computer-readable instructions, or data structures and which may be accessed by a general-purpose or special-purpose computer system.
- a “network” is defined as any architecture where two or more computer systems may exchange data with each other.
- Computer-executable instructions comprise, for example, instructions and data which cause a general-purpose computer system or special-purpose computer system to perform a certain function or group of functions.
- a “computer system” is defined as one or more software modules, one or more hardware modules, or combinations thereof, that work together to perform operations on electronic data.
- the definition of computer system includes the hardware components of a personal computer, as well as software modules, such as the operating system of the personal computer. The physical layout of the modules is not important.
- a computer system may include one or more computers coupled via a computer network.
- a computer system may include a single physical device (such as a mobile phone or Personal Digital Assistant “PDA”) where internal modules (such as a memory and processor) work together to perform operations on electronic data.
- PDA Personal Digital Assistant
- the invention may be practiced in network computing environments with many types of computer system configurations, including personal computers, laptop computer, hand-held devices, multi-processor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, mobile telephones, PDAs, pagers, and the like.
- the invention may also be practiced in distributed computing environments where local and remote computer systems, which are linked (either by hardwired links, wireless links, or by a combination of hardwired or wireless links) through a communication network, both perform tasks.
- program modules may be located in both local and remote memory storage devices.
- FIG. 1 and the following discussion are intended to provide a brief, general description of a suitable computing environment in which the invention may be implemented.
- the invention will be described in the general context of computer-executable instructions, such as program modules, being executed by computer systems.
- program modules include routines, programs, objects, components, data structures, and the like, which perform particular tasks or implement particular abstract data types.
- Computer-executable instructions, associated data structures, and program modules represent examples of the program code means for executing steps of the methods disclosed herein. The particular sequences of such executable instructions or associated data structures represent examples of corresponding acts for implementing the functions described in such steps.
- an example system for implementing the invention includes a general-purpose computing device in the form of computer system 120 , including a processing unit 121 , a system memory 122 , and a system bus 123 that couples various system components including the system memory 122 to the processing unit 121 .
- Processing unit 121 may execute computer-executable instructions designed to implement features of computer system 120 , including features of the present invention.
- the system bus 123 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures.
- the system memory includes read only memory (ROM) 124 and random access memory (RAM) 125 .
- a basic input/output system (BIOS) 126 containing the basic routines that help transfer information between elements within the computer 120 , such as during start-up, may be stored in ROM 124 .
- the computer system 120 may also include a magnetic hard disk drive 127 for reading from and writing to a magnetic hard disk 139 , a magnetic disk drive 128 for reading from or writing to a removable magnetic disk 129 , and an optical disk drive 130 for reading from or writing to removable optical disk 131 such as a CD-ROM or other optical media.
- the magnetic hard disk drive 127 , magnetic disk drive 128 , and optical disk drive 130 are connected to the system bus 123 by a hard disk drive interface 132 , a magnetic disk drive-interface 133 , and an optical drive interface 134 , respectively.
- the drives and their associated computer-readable media provide nonvolatile storage of computer-executable instructions, data structures, program modules and other data for the computer system 120 .
- Program code means comprising one or more program modules may be stored on the hard disk 139 , magnetic disk 129 , optical disk 131 , ROM 124 or RAM 125 , including an operating system 135 , one or more application programs 136 , other program modules 137 , and program data 138 .
- a user may enter commands and information into the computer system 120 through keyboard 140 , pointing device 142 , or other input devices (not shown), such as a microphone, joy stick, game pad, satellite dish, scanner, or the like.
- These and other input devices are often connected to the processing unit 121 through a serial port interface 146 coupled to system bus 123 .
- the input devices may be connected by other interfaces, such as a parallel port, a game port or a universal serial bus (USB).
- a monitor 147 or another display device is also connected to system bus 123 via an interface, such as video adapter 148 .
- personal computers typically include other peripheral output devices (not shown), such as speakers and printers.
- the computer system 120 may operate in a networked environment using logical connections to one or more remote computers, such as remote computers 149 A and 149 B.
- Remote computers 149 A and 149 B may each be another personal computer, a server, a router, a network PC, a peer device, or other common network node, and typically include many or all of the elements described above relative to the computer system 120 , although only memory storage devices 150 A and 150 B and their associated application programs 136 A and 136 B are illustrated in FIG. 1 .
- the logical connections depicted in FIG. 1 include a local area network (LAN) 151 and a wide area network (WAN) 152 that are presented here by way of example and not limitation.
- LAN local area network
- WAN wide area network
- the computer system 120 When used in a LAN networking environment, the computer system 120 is connected to the local network 151 through a network interface or adapter 153 . When used in a WAN networking environment, the computer system 120 may include a modem 154 , a wireless link, or other means for establishing communications over the wide area network 152 , such as the Internet.
- the modem 154 which may be internal or external, is connected to the system bus 123 via the serial port interface 146 .
- program modules depicted relative to the computer system 120 may be stored in the remote memory storage device. It will be appreciated that the network connections shown are merely examples and other means of establishing communications over wide area network 152 may be used.
- FIG. 1 represents a suitable operating environment for the present invention
- the principles of the present invention may be employed in any system that is capable of, with suitable modification if necessary, implementing the principles of the present invention.
- the environment illustrated in FIG. 1 is illustrative only and by no means represents even a small portion of the wide variety of environments in which the principles of the present invention may be implemented.
- a “logical communication path” is defined as any communication path that may enable the transport of electronic data between two entities such as computer systems or modules. The actual physical representation of a communication path between two entities is not important and may change over time.
- a logical communication path may include portions of a system bus, a local area network, a wide area network, the Internet, combinations thereof, or portions of any other path that may facilitate the transport of electronic data.
- Logical communication paths may include hardwired links, wireless links, or a combination of hardwired links and wireless links.
- Logical communication paths may also include software or hardware modules that condition or format portions of data so as to make them accessible to components that implement the principles of the present invention. Such components may include, for example, proxies, routers, firewalls, or gateways.
- Logical communication paths may also include portions of a Virtual Private Network (“VPN”).
- VPN Virtual Private Network
- a “response” is defined as any action taken by an advertisement recipient that indicates the advertisement recipient has shown some interest in an advertised product. Advertisement recipients may perform actions indicating different levels of interest in an advertised product. For example, an advertisement recipient may show a higher level of interest in an advertised product by buying the product. On the other hand an advertisement recipient may show a lower level of interest by selecting an advertisement (e.g. “clicking through”) to view more information about an advertised product. It should be understood that response is defined, generally, to cover different levels of advertisement recipient interest.
- probability determination and score alteration modules as well as associated data, including user profiles and advertisements may be stored and accessed from any of the computer-readable media associated with computer system 120 .
- portions of such modules and portions of associated program data may be included in operating system 135 , application programs 136 , other program modules 137 and/or program data 138 , for storage in system memory 122 .
- Portions of such modules and associated program data may also be stored in any of the mass storage devices previously described, for example hard disk 139 . Execution of such modules may be performed in a distributed environment as previously described.
- FIG. 2 illustrates some of the functional components that may facilitate modifying advertisement scores based on response probabilities.
- FIG. 2 includes advertising computer system 260 that may be a flexible general-purpose computer system configured to implement the principles of the present invention. As illustrated, advertising computer system 260 includes probability determination module 261 , which may be configured to determine response probabilities for advertisements, and score alteration module 262 , which may be configured to alter advertisement scores based on response probabilities.
- probability determination module 261 which may be configured to determine response probabilities for advertisements
- score alteration module 262 which may be configured to alter advertisement scores based on response probabilities.
- FIG. 3 is a flow diagram illustrating an example of a method for modifying advertisement scores based on a response probability. The method in FIG. 3 will be discussed with reference to the functional components included in FIG. 2 .
- the method in FIG. 3 may begin with a step for identifying a response probability for each advertisement in a plurality of advertisements.
- Response probabilities may be accessed from a database of response probabilities or may be received via an advertisement pipeline.
- Step 304 may include a corresponding act of accessing a plurality of possible advertisements (act 301 ).
- Possible advertisements may be accessed from an advertisement database or received via an advertisement pipeline.
- Each advertisement in the possible advertisements may be associated with a probabilistic predictive model, such as, for example, decision trees, naive Bayes, or logistical regression, that includes one or more response probabilities.
- Possible advertisements 210 are received at probability determination module 261 via logical communication path 271 .
- Possible advertisements 210 represents a plurality of advertisements that may, if appropriate, be presented to an advertising recipient.
- Each advertisement in possible advertisements 210 includes a score and a decision tree, for example, advertisement 220 includes score 221 and decision tree 222 . Where three consecutive periods are illustrated in FIG. 2 (i.e. an ellipses), this represents that other advertisements may precede the illustrated advertisements or other advertisements follow the illustrated advertisements.
- Logical communication path 271 may be a portion of an advertisement pipeline. Possible advertisements 210 may have been output from a previous module in the advertisement pipeline before being received at probability determination module 261 .
- a score associated with an advertisement may be a numerical value that indicates whether or not an advertisement will be presented to a user. Advertisements associated with higher scores may be presented before advertisements associated with lower scores. After scores are appropriately altered, a presentation module may present a specified number of advertisements associated with higher scores, while other advertisement associated with lower scores are not presented. It should be understood that the use of numerical values to determine which advertisements are presented is merely an example. It would be apparent to one skilled in the art, after having reviewed this description, that a variety of different scoring values may be utilized to determine which advertisements are presented.
- a decision tree associated with an advertisement may include a root node, one or more intermediate nodes, and one or more leaf nodes.
- a root node is attached to other nodes (intermediate nodes and/or leaf nodes) that are directly beneath the root node.
- Intermediate nodes are attached to a node (root node or other intermediate node) that is directly above the intermediate node and to other nodes (intermediate nodes and/or leaf nodes) that are directly beneath the intermediate node.
- Leaf nodes are attached to a node (root node or intermediate node) that is directly above the leaf node.
- Decision logic may be contained at each root node and at each intermediate node and a response probability value may be contained at each leaf node.
- Response probability values represent a probability that an advertisement recipient will have a response to an advertisement.
- a response probability value may be a numeric value between zero and one. Zero may represent that an advertisement recipient will never respond to (0%) an advertisement. Conversely, one may represent that an advertisement recipient will always respond (100%) an advertisement.
- Response probability values may be decimal numeric values representing some percentage chance that an advertising recipient will respond to an advertisement. For example, a response probability value of 0.12 may represent a 12% chance that an advertising recipient will respond to an advertisement.
- Responding to an advertisement may result when an advertising recipient manipulates an input device such as, for example, a keyboard or mouse to provide an indication that they wish to view the advertisement. “Clicking” on an advertisement with a mouse is one type of response.
- An advertising recipient may also respond by selecting a currently viewed advertisement when more information on an advertised product is desired. Further, an advertising recipient may respond by purchasing an advertised product. If a product is purchased “on-line” this information may be recorded into a database.
- Decision tree 400 includes root node 401 , a plurality of intermediate nodes (e.g., intermediate nodes 411 - 413 , 421 - 426 , 428 , 429 , 435 and 445 ), each represented by rectangles and a plurality of leaf nodes (e.g., leaf nodes 432 - 434 , 436 - 442 , 444 , 446 - 449 and 451 - 454 ), each represented by circles.
- Root node 401 contains decision logic that may cause nodes below the root node or intermediate node to be accessed.
- decision logic contained at root node 401 and at intermediate nodes is associated with observations about potential advertisement recipients.
- decision trees is merely an example of a probabilistic prediction model. However, use of a decision tree is not important to practicing the present invention. It would be apparent to one skilled in the art, after having reviewed this description, that a variety of different probabilistic prediction models may be used to practice the present invention.
- the present invention may be practiced with any model that takes advertisement recipient attributes and attribute values as inputs and provides a probability distribution that an advertisement recipient will respond to advertisements.
- Probabilistic prediction models include, for example, naive Bayes, logistic regression, generalized additive models, mixture models, and boosted versions of these classifiers.
- the illustrated decision tree configuration is one of many possible configurations. However, the illustrated decision tree configuration is not important to practicing the present invention. It would be apparent to one skilled in the art, after having reviewed this description, that a variety of different decision tree configurations, including an inverted decision tree, may be used to practice the present invention.
- Each advertisement in possible advertisements 210 may include a decision tree that is configured differently than the decision trees of other advertisements.
- the decision trees 222 , 232 , and 242 may all be configured differently.
- Decision trees may be viewed as having different configurations when the nodes of the decision trees contain different decision logic and/or when the nodes of decision tress are arranged differently.
- Different decision tree configurations may be desired for advertisements of different products. For example, a first decision tree configuration may be desirable for automotive products and a second decision tree configuration may desirable for household products.
- Step 304 may include a corresponding act of determining a response probability for each advertisement in the plurality of possible advertisements (act 302 ). For each advertisement, this may include traversing a corresponding decision tree to access a response probability contained in a leaf node of the decision tree. Decision logic of different decision trees may be utilized for different advertisements. For advertisements 220 , 230 , and 240 this may include traversing decision trees 222 , 232 , and 242 respectively. For example, for advertisement 230 , decision tree 232 may be traversed to access a leaf node of decision tree 232 .
- Determining response probabilities may include referencing data associated with an advertising recipient (“recipient data”).
- Recipient data may include demographic data associated with an advertising recipient such as, for example, age, income, sex, marital status, number of children, etc.
- Recipient data may also include purchasing data such as, for example, a list of products an advertising recipient recently purchased, when they purchased the products, what price was paid for the products, etc.
- Recipient data may also include business data such as, for example, an advertising recipient's type of business, place of employment, position, and membership in organizations, etc. Recipient data may also include what web pages a recipient has accessed. It should be understood that these are merely examples of the types of recipient data that may be referenced. It would be apparent to one skilled in the art, after having reviewed this description, that a wide variety of types of recipient data, in addition to those described, may be utilized to practice the present invention.
- Recipient data may be referenced from a user profile that contains recipient data. As shown in FIG. 2 , probability determination module 261 may reference recipient data from user profile 250 via logical communication path 272 . Probability module 261 may utilize the decision logic in decision trees along with the recipient data to calculate a response probability for each advertisement.
- Recipient data may be in the form of readable text that is included in a user profile.
- Readable text representing an example of recipient data will be described with reference to FIG. 4 .
- this represents that other recipient data may precede the illustrated readable text or may follow the illustrated readable text.
- Numbers enclosed in brackets are line numbers and are included for informational purposes to aid in clarifying the description of the readable text.
- Decision tree 400 may be associated with one of the advertisements include in possible advertisements 210 .
- Probability determination module 261 may utilize the decision logic contained in the root node and intermediate nodes of decision tree 400 along with the readable text recipient data to access a response probability contained in a leaf node of decision tree 400 .
- Root node 401 of decision tree 400 contains decision logic that makes a decision based on an advertising recipient's yearly income, if yearly income is less than $20,000, intermediate node 411 is accessed, if yearly income is between $20,000 and $50,000, intermediate node 412 is accessed, and if yearly income is greater than $50,000, intermediate node 413 is accessed.
- Line 4 of the recipient data includes the text “Income-43,000”, this may represent that an advertising recipient's yearly income is $43,000.
- the decision logic of root node 401 may utilize this data to access intermediate node 412 .
- Intermediate node 412 contains decision logic that makes a decision based on an advertising recipient's age, if age is less than 18 , intermediate node 424 is accessed, if age is between 18 and 24, intermediate node 425 is accessed, if age is between 25 and 40, intermediate node 426 is accessed, and if age is greater than 40, leaf node 427 is accessed.
- Line 2 of the recipient data includes the text “Age-34”, this may represent that an advertising recipient is age 34.
- the decision logic of intermediate node 412 may utilize this data to access intermediate node 426 .
- Intermediate node 426 contains decision logic that makes a decision based on an advertising recipient's marital status, if single, leaf node 444 is accessed and if married, intermediate node 445 is accessed.
- Line 3 of the recipient data ncludes the text “Status-Married”, this may represent that an advertising recipient is married.
- the decision logic of intermediate node 426 may utilize this data to access intermediate node 445 .
- Intermediate node 445 contains decision logic that makes a decision based on number of children, if three or less children leaf node 453 is accessed and if greater than three children leaf node 454 is accessed.
- Line 5 of the recipient data includes the text “Children-1”, this may represent that an advertising recipient has one child.
- the decision logic of intermediate node 445 may utilize this data to access leaf node 453 .
- Leaf node 453 contains a response probability of “0.06”. This response probability may represent a percentage that the advertisement associated with decision tree 400 will be “clicked on” or otherwise responded to. This response probability may indicate that a 34 year old, married advertisement recipient with $44,000 yearly income and one child has a 6% chance of responding to an advertisement associated with decision tree 400 .
- Probability determination module 261 may utilize the readable text recipient data (or may utilize other recipient data) and traverse other decision trees to access a response probability for each advertisement in possible advertisements 210 .
- decision tree 222 may be traversed to access a response probability for advertisement 220
- decision tree 232 may be traversed to access a response probability for advertisement 230
- decision tree 242 may be traversed to access a response probability for advertisement 240 , etc.
- a score associated with each of the possible advertisements may be altered based on the response probability for each of the possible advertisements (act 303 ).
- the scores may be the previously accessed scores, for example, scores 221 , 231 and 232 .
- score alteration module 262 may receive advertisements 210 along with response probabilities calculated by probability determination module 261 via logical communication path 273 .
- Score alteration module 262 may calculate a statistical mean probability value by iterating over the response probabilities contained in every leaf node of every decision tree associated with possible advertisements 210 .
- the statistical mean value may represent an “average” response probability.
- the average can be a weighted average, where the weight for a leaf node is equal to the percentage of times that the leaf node is used to determine a response probability, or can be a simple average. If a non-decision-tree predictive model is used, such as, for example, naive Bayes or logistical regression, advertising computer system 260 may track response probabilities that are output and compute a simple average of those response probabilities. The deviation of a particular leaf node's probability from the mean probability may be indicative of how a score is to be altered. When simple averages are used the deviation may be represented by a simple standard deviation. Likewise, when weighted averages are used the deviation may be represented by a weighted standard deviation.
- a score for an advertisement may be decreased.
- the chance of presenting an advertisement to a user may be decreased where the probability that the user will respond to the advertisement is below average.
- a score for an advertisement may be increased.
- the chance of presenting an advertisement to a user may be increased where the probability that the user will respond to the advertisement is above average.
- advertisement scores may be increased or decreased through the use of multiplicative factors. Different ranges of deviation (e.g. some number of standard deviations from the mean) may result in different multiplicative factors being applied to a score. Multiplicative factors for altering a score may be calculated from values in a decision tree and/or may be user-configurable.
- a group of pseudo-code instructions representing an example of instructions that may be utilized to perform score alteration will be described.
- score alteration is facilitated using simple averages and simple standard deviations.
- weighted averages and weighted standard deviations may be used to facilitate score alteration.
- a module, for example, score alteration module 262 may execute instructions similar to the group of pseudo-code instructions to alter the scores of advertisements.
- pseudo-code instructions may be implemented as computer-executable instructions using a wide variety of programming languages and programming techniques.
- a sole period on three consecutive lines i.e., a vertical ellipsis
- Numbers enclosed in brackets are line numbers and are included for informational purposes to aid in clarifying the description of the instructions.
- Text preceded by two diagonal bars (“//”) represents informational comments describing the pseudo-code.
- variable “B” is set equal to a value representing the statistical mean (hereinafter referred to as the “mean value”) of the response probability values in every leaf node of every decision tree (hereinafter referred to as “all the response probability values”).
- the variable “A” is set equal to a value representing the mean value of all the response probability values minus two standard deviations of all the response probability values.
- the variable “C” is set equal to a value representing the mean values of all the response probability values plus two standard deviations of all the response probabilities. This essentially divides the range of all the response probability values into four regions.
- FIG. 5 is an example of how the values A, B, and C may divide a range of response probability values into different regions.
- Shown in FIG. 5 is a range of response probabilities values with zero on the left and increasing to one on the right.
- zero represents a 0% chance that an advertisement will be responded to and 1 represents a 100% chance that an advertisement will be responded to.
- the response probability for each advertisement may fall somewhere within the range illustrated in FIG. 5 .
- Region 1 includes response probability values from zero up to and including A.
- Region 2 includes response probability values between A and B.
- Region 3 includes response probability values between B and C.
- Region 4 includes response probability values from and including C up to 1.
- the distance between A and B is two standard deviations and the distance between B and C is two standard deviations.
- any response probability value at least two standard deviations less than B will fall in the region 1 .
- any response probability value at least two standard deviations greater than C will fall in region 4 .
- Any response probability value less than B, but not at least two standard deviations less than B will fall in the region 2 .
- Any response probability value greater than B, but not at least two standard deviations greater than B will fall in the region 3 .
- min_factor is set equal to a minimum multiplicative factor.
- This minimum multiplicative factor represents a value that may be used to alter an advertisement score.
- the minimum multiplicative factor may be used to decrease advertisement scores that have a response probability value in the region with the lowest probability values (e.g. region 1 in FIG. 5 ).
- a user may configure the minimum multiplicative factor value externally. It may be that min_factor is set to a value less than one, thus reducing advertisement scores that are multiplied by min_factor.
- the variable “max_factor” is set equal to a maximum multiplicative factor.
- This maximum multiplicative factor represents a value that may be used to alter an advertisement score.
- the maximum multiplicative factor may be used to increase advertisement scores that have a response probability value in the region with the highest probability values (e.g. region 4 in FIG. 5 ).
- a user may configure the maximum multiplicative factor value externally. It may be that max_factor is set to a value greater than one, thus increasing advertisement scores that are multiplied by max_factor.
- the min_factor variable may be used to limit advertisement score reduction. That is, no advertisement score may be decreased to a value that is less than a product of the score multiplied by min_factor.
- the max_factor variable may be used to limit advertisement score increase. That is, no advertisement score may be increased to a value that is more than a product of the score multiplied by max_factor.
- the min_factor and max_factor variables may be included in intermediate values used to alter scores for advertisements that have response probability values in intermediate regions. For example, region 2 and region 3 in FIG. 5 .
- the pseudo-code instruction “for each ad” indicates the beginning of a “for” loop that will be executed for each advertisement (e.g. each advertisement in possible advertisements 210 ).
- the pseudo-code instruction “endfor” at line 20 indicates the end of the “for” loop that begins at line 10. Taken together, lines 10 and 20 indicate that the pseudo-code instructions from line 11 through line 19 will be executed for each advertisement.
- a response probability value may be a value that was contained in the leaf node of a decision tree.
- a response probability value for an advertisement is greater than or equal to C (i.e. at least two standard deviations greater than B) and thus falls in region 4 .
- line 12 is executed.
- an advertisement score is altered.
- a variable “new_score” is set equal to the product of max_factor multiplied by a variable “old_score”.
- the variable old_score represents the score associated with an advertisement when the advertisement was initially received. For example, the scores 221 , 231 , and 241 as initially received by probability determination module 261 .
- the new_score variable represents a new score that will be associated with the advertisement and that will replace the old_score.
- altered score 223 may represent a new score for advertisement 220 and may replace score 221 , which represents an old score. Since max_factor may be set to a value greater than one, the value of new_score may be greater than the value of old_score. Thus, an advertisement score may be increased when an associated response probability value falls in region 4 .
- a response probability value for an advertisement is less than or equal to A (i.e. at least two standard deviations less than B) and thus falls in region 3 .
- line 14 is executed.
- an advertisement score is altered.
- the variable new_score is set equal to the product of min_factor multiplied by the variable old_score. Since min_factor may be set to a value less than one, the value of new_score may be less than the value of old_score. Thus, an advertisement score may be decreased when an associated response probability value falls in region 1 .
- line 15 it is determined if a response probability value for an advertisement is greater than B. Since all response probability values greater than or equal to C satisfy the “if” statement at line 11, line 15 essentially represents an “if” statement with the condition that a response probability value be greater than B and less than C. Such response probability values would fall in region 3 .
- line 16 is executed. At line 16, an advertisement score is altered.
- the intermediate value approaches one as a response probability value approaches B and the intermediate value approaches max_factor as a response probability value approaches C.
- an advertisement score may be increased when an associated response probability value falls in region 3 .
- the magnitude of an increase is less than the magnitude of an increase when response probability values fall in region 4 .
- a response probability value for an advertisement is less than B. Since all response probability values less than or equal to A satisfy the “if” statement at line 13, line 18 essentially represents an “if” statement with the condition that a response probability value be less than B and greater than A. Such response probability values would fall in region 2 .
- line 18 is executed.
- an advertisement score is altered.
- the intermediate value approaches min_factor as a response probability value approaches A and the intermediate value approaches 1 as a response probability value approaches B.
- Advertisements that include altered scores may be output. Shown in FIG. 2 , score alteration module 262 outputs possible advertisements 210 via logical communication path 274 . Advertisements may be output to an advertisement database or to a module that is included in an advertisement pipeline. Logical communication path 274 may represent a portion of an advertisement pipeline.
- the present invention is practiced to modify scores for content, such as, for example, content on the World Wide Web (“WWW”), based on response probabilities.
- a plurality of possible portions of Web content e.g. Web pages
- Each portion of Web content is associated with a probabilistic prediction model.
- a response probability is determined for each portion of Web content in the plurality of possible portions of Web content.
- Responding to Web content includes any action taken by a recipient of the Web content that indicates the Web content recipient has shown some interest in the subject matter of the Web content. Similar to advertisements, this may include selecting a portion of Web content (e.g. a Web page) by clicking through to view more information about the subject matter of the Web content. Based on the response probability for each of the possible portions of Web content, a score associated with each of the possible portions of Web content are altered.
- Modifying advertisement scores based on response probabilities increases the chances of presenting advertisements a user will respond to and decreases the chances of presenting advertisements a user will not respond to. This promotes conservation of resources in computer systems that present advertisements, as there is a decreased chance such resources will be used to present advertisements that will not be responded to. Further, the chances of presenting undesirable advertisements to a user are also decreased.
Landscapes
- Business, Economics & Management (AREA)
- Strategic Management (AREA)
- Engineering & Computer Science (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- Finance (AREA)
- Entrepreneurship & Innovation (AREA)
- Physics & Mathematics (AREA)
- Game Theory and Decision Science (AREA)
- Economics (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Probability & Statistics with Applications (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
- [1] Name-John Doe
- [2] Age-35
- [3] Status-Married
- [4] Income-43,000
- [5] Children-1
- [6] Employer-XYZ Corporation
- [7] Position-Sales Manager
[01]//means and stddevs are computed by iterating over each leaf node of every tree |
[02]A=mean (log(response probability)) − 2*stddev(log(response probability)) |
[03]B=mean (log(response probability)) |
[04]C=mean (log(response probability)) + 2*stddev(log(response probability)) |
[05] |
[06]min_factor=minimum multiplicative factor //set externally |
[07]max_factor=maximum multiplicative factor //set externally |
[08] |
[09]//p(ad=respond is shorthand for p(ad=respond|observations for user) |
[10]for each ad |
[11] if log(p(ad=respond)) >= C then |
[12] new_score(ad)=max_factor* old_score(ad) |
[13] elseif log(p(ad=respond)) <= A then |
[14] new_score(ad)=min_factor*old_score(ad) |
[15] elseif log(p(ad=respond)) > B then |
[16] new_score(ad)=exp((log(p(ad=respond)) − B)/(C-B))*log(max_factor))* old_score(ad) |
[17] elseif log(p(ad=respond)) < B then |
[18] new_score(ad)=exp((B − log(p(ad=respond)))/(B-A))*log(min_factor))*old_score(ad) |
[19] endif |
[20]endfor |
Claims (27)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/163,056 US7370002B2 (en) | 2002-06-05 | 2002-06-05 | Modifying advertisement scores based on advertisement response probabilities |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/163,056 US7370002B2 (en) | 2002-06-05 | 2002-06-05 | Modifying advertisement scores based on advertisement response probabilities |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030229531A1 US20030229531A1 (en) | 2003-12-11 |
US7370002B2 true US7370002B2 (en) | 2008-05-06 |
Family
ID=29709910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/163,056 Expired - Fee Related US7370002B2 (en) | 2002-06-05 | 2002-06-05 | Modifying advertisement scores based on advertisement response probabilities |
Country Status (1)
Country | Link |
---|---|
US (1) | US7370002B2 (en) |
Cited By (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040204989A1 (en) * | 2003-03-10 | 2004-10-14 | Russell Dicker | Method for selecting relevant campaign messages for transmission to recipients |
US20060190331A1 (en) * | 2005-02-04 | 2006-08-24 | Preston Tollinger | Delivering targeted advertising to mobile devices |
US20060294084A1 (en) * | 2005-06-28 | 2006-12-28 | Patel Jayendu S | Methods and apparatus for a statistical system for targeting advertisements |
US20070027753A1 (en) * | 2005-07-29 | 2007-02-01 | Collins Robert J | System and method for optimizing the delivery of advertisements |
US20070078668A1 (en) * | 2005-09-30 | 2007-04-05 | Dimpy Pathria | Authentication ID interview method and apparatus |
US20070078989A1 (en) * | 2005-09-30 | 2007-04-05 | Van Datta Glen | Population of an Advertisement Reference List |
US20070088605A1 (en) * | 2005-10-19 | 2007-04-19 | Yahoo! Inc. | System and method for achieving linear advertisement impression delivery under uneven, volatile traffic conditions |
US20070094083A1 (en) * | 2005-10-25 | 2007-04-26 | Podbridge, Inc. | Matching ads to content and users for time and space shifted media network |
US20070094363A1 (en) * | 2005-10-25 | 2007-04-26 | Podbridge, Inc. | Configuration for ad and content delivery in time and space shifted media network |
US20070094081A1 (en) * | 2005-10-25 | 2007-04-26 | Podbridge, Inc. | Resolution of rules for association of advertising and content in a time and space shifted media network |
US20070156514A1 (en) * | 2005-12-30 | 2007-07-05 | Daniel Wright | Estimating ad quality from observed user behavior |
US20070156887A1 (en) * | 2005-12-30 | 2007-07-05 | Daniel Wright | Predicting ad quality |
US20070156621A1 (en) * | 2005-12-30 | 2007-07-05 | Daniel Wright | Using estimated ad qualities for ad filtering, ranking and promotion |
US20080005098A1 (en) * | 2006-06-30 | 2008-01-03 | Holt Alexander W | System for using business value of performance metrics to adaptively select web content |
US20080228893A1 (en) * | 2007-03-12 | 2008-09-18 | Cvon Innovations Limited | Advertising management system and method with dynamic pricing |
US20090024409A1 (en) * | 2002-02-06 | 2009-01-22 | Ryan Steelberg | Apparatus, system and method for a brand affinity engine using positive and negative mentions |
US20090030779A1 (en) * | 2005-02-04 | 2009-01-29 | Preston Tollinger | Electronic coupon filtering and delivery |
US20090068991A1 (en) * | 2007-09-05 | 2009-03-12 | Janne Aaltonen | Systems, methods, network elements and applications for modifying messages |
US20090070207A1 (en) * | 2007-09-10 | 2009-03-12 | Cellfire | Electronic coupon display system and method |
US20090083788A1 (en) * | 2006-05-05 | 2009-03-26 | Russell Riley R | Advertisement Rotation |
US20090144130A1 (en) * | 2007-07-13 | 2009-06-04 | Grouf Nicholas A | Methods and systems for predicting future data |
US20090210246A1 (en) * | 2002-08-19 | 2009-08-20 | Choicestream, Inc. | Statistical personalized recommendation system |
US20090271228A1 (en) * | 2008-04-23 | 2009-10-29 | Microsoft Corporation | Construction of predictive user profiles for advertising |
US20100023581A1 (en) * | 2008-07-25 | 2010-01-28 | Shlomo Lahav | Method and system for providing targeted content to a surfer |
US20100088152A1 (en) * | 2008-10-02 | 2010-04-08 | Dominic Bennett | Predicting user response to advertisements |
US20100088177A1 (en) * | 2008-10-02 | 2010-04-08 | Turn Inc. | Segment optimization for targeted advertising |
US20100088166A1 (en) * | 2008-10-06 | 2010-04-08 | Cellfire, Inc. | Electronic Coupons |
US7818208B1 (en) | 2005-06-28 | 2010-10-19 | Google Inc. | Accurately estimating advertisement performance |
US7873541B1 (en) * | 2004-02-11 | 2011-01-18 | SQAD, Inc. | System and method for aggregating advertising pricing data |
US20110040612A1 (en) * | 2009-08-14 | 2011-02-17 | Simmons Willard L | Machine learning for computing and targeting bids for the placement of advertisements |
US20110040627A1 (en) * | 2009-08-11 | 2011-02-17 | Microsoft Corporation | Viral advertisements |
US20110066497A1 (en) * | 2009-09-14 | 2011-03-17 | Choicestream, Inc. | Personalized advertising and recommendation |
US20110071901A1 (en) * | 2009-09-21 | 2011-03-24 | Alexander Fries | Online Advertising Methods and Systems and Revenue Sharing Methods and Systems Related to Same |
US20110153419A1 (en) * | 2009-12-21 | 2011-06-23 | Hall Iii Arlest Bryon | System and method for intelligent modeling for insurance marketing |
US20110153423A1 (en) * | 2010-06-21 | 2011-06-23 | Jon Elvekrog | Method and system for creating user based summaries for content distribution |
US20120060185A1 (en) * | 2009-04-28 | 2012-03-08 | Chakraborty Rakesh | Method and apparatus for planning a schedule of multimedia advertisements in a broadcasting channel |
US8175989B1 (en) | 2007-01-04 | 2012-05-08 | Choicestream, Inc. | Music recommendation system using a personalized choice set |
US8249912B2 (en) * | 2008-02-20 | 2012-08-21 | Sebastian Elliot | Method for determining, correlating and examining the causal relationships between media program and commercial content with response rates to advertising and product placement |
US8271328B1 (en) * | 2008-12-17 | 2012-09-18 | Google Inc. | User-based advertisement positioning using markov models |
US8504419B2 (en) | 2010-05-28 | 2013-08-06 | Apple Inc. | Network-based targeted content delivery based on queue adjustment factors calculated using the weighted combination of overall rank, context, and covariance scores for an invitational content item |
US20130204954A1 (en) * | 2007-11-05 | 2013-08-08 | Timothy A. Kendall | Communicating information in a social networking website about activities from another domain |
US8510309B2 (en) | 2010-08-31 | 2013-08-13 | Apple Inc. | Selection and delivery of invitational content based on prediction of user interest |
US8510658B2 (en) | 2010-08-11 | 2013-08-13 | Apple Inc. | Population segmentation |
US8574074B2 (en) | 2005-09-30 | 2013-11-05 | Sony Computer Entertainment America Llc | Advertising impression determination |
US8595851B2 (en) | 2007-05-22 | 2013-11-26 | Apple Inc. | Message delivery management method and system |
US8640032B2 (en) | 2010-08-31 | 2014-01-28 | Apple Inc. | Selection and delivery of invitational content based on prediction of user intent |
US8676900B2 (en) | 2005-10-25 | 2014-03-18 | Sony Computer Entertainment America Llc | Asynchronous advertising placement based on metadata |
US20140089041A1 (en) * | 2012-09-27 | 2014-03-27 | Bank Of America Corporation | Two sigma intelligence |
US8712382B2 (en) | 2006-10-27 | 2014-04-29 | Apple Inc. | Method and device for managing subscriber connection |
US8719091B2 (en) | 2007-10-15 | 2014-05-06 | Apple Inc. | System, method and computer program for determining tags to insert in communications |
US8738732B2 (en) | 2005-09-14 | 2014-05-27 | Liveperson, Inc. | System and method for performing follow up based on user interactions |
US8751310B2 (en) | 2005-09-30 | 2014-06-10 | Sony Computer Entertainment America Llc | Monitoring advertisement impressions |
US8751305B2 (en) | 2010-05-24 | 2014-06-10 | 140 Proof, Inc. | Targeting users based on persona data |
US8762313B2 (en) | 2008-07-25 | 2014-06-24 | Liveperson, Inc. | Method and system for creating a predictive model for targeting web-page to a surfer |
US8763090B2 (en) | 2009-08-11 | 2014-06-24 | Sony Computer Entertainment America Llc | Management of ancillary content delivery and presentation |
US8763157B2 (en) | 2004-08-23 | 2014-06-24 | Sony Computer Entertainment America Llc | Statutory license restricted digital media playback on portable devices |
US8769558B2 (en) | 2008-02-12 | 2014-07-01 | Sony Computer Entertainment America Llc | Discovery and analytics for episodic downloaded media |
US8805844B2 (en) | 2008-08-04 | 2014-08-12 | Liveperson, Inc. | Expert search |
US8805941B2 (en) | 2012-03-06 | 2014-08-12 | Liveperson, Inc. | Occasionally-connected computing interface |
US8868448B2 (en) | 2000-10-26 | 2014-10-21 | Liveperson, Inc. | Systems and methods to facilitate selling of products and services |
US8892495B2 (en) | 1991-12-23 | 2014-11-18 | Blanding Hovenweep, Llc | Adaptive pattern recognition based controller apparatus and method and human-interface therefore |
US8898217B2 (en) | 2010-05-06 | 2014-11-25 | Apple Inc. | Content delivery based on user terminal events |
US8918465B2 (en) | 2010-12-14 | 2014-12-23 | Liveperson, Inc. | Authentication of service requests initiated from a social networking site |
US8943002B2 (en) | 2012-02-10 | 2015-01-27 | Liveperson, Inc. | Analytics driven engagement |
US8983978B2 (en) | 2010-08-31 | 2015-03-17 | Apple Inc. | Location-intention context for content delivery |
US9141504B2 (en) | 2012-06-28 | 2015-09-22 | Apple Inc. | Presenting status data received from multiple devices |
US9159083B1 (en) | 2012-06-18 | 2015-10-13 | Google Inc. | Content evaluation based on user's browsing history |
US9350598B2 (en) | 2010-12-14 | 2016-05-24 | Liveperson, Inc. | Authentication of service requests using a communications initiation feature |
US9432468B2 (en) | 2005-09-14 | 2016-08-30 | Liveperson, Inc. | System and method for design and dynamic generation of a web page |
US9535563B2 (en) | 1999-02-01 | 2017-01-03 | Blanding Hovenweep, Llc | Internet appliance system and method |
US9563336B2 (en) | 2012-04-26 | 2017-02-07 | Liveperson, Inc. | Dynamic user interface customization |
US9672196B2 (en) | 2012-05-15 | 2017-06-06 | Liveperson, Inc. | Methods and systems for presenting specialized content using campaign metrics |
US9767212B2 (en) | 2010-04-07 | 2017-09-19 | Liveperson, Inc. | System and method for dynamically enabling customized web content and applications |
US9819561B2 (en) | 2000-10-26 | 2017-11-14 | Liveperson, Inc. | System and methods for facilitating object assignments |
US9864998B2 (en) | 2005-10-25 | 2018-01-09 | Sony Interactive Entertainment America Llc | Asynchronous advertising |
US9892417B2 (en) | 2008-10-29 | 2018-02-13 | Liveperson, Inc. | System and method for applying tracing tools for network locations |
US10108988B2 (en) | 2005-12-30 | 2018-10-23 | Google Llc | Advertising with video ad creatives |
US10278065B2 (en) | 2016-08-14 | 2019-04-30 | Liveperson, Inc. | Systems and methods for real-time remote control of mobile applications |
US10346871B2 (en) * | 2016-04-22 | 2019-07-09 | Facebook, Inc. | Automatic targeting of content by clustering based on user feedback data |
US10600090B2 (en) | 2005-12-30 | 2020-03-24 | Google Llc | Query feature based data structure retrieval of predicted values |
US10755309B2 (en) * | 2014-06-26 | 2020-08-25 | Piksel, Inc. | Delivering content |
US10846745B1 (en) * | 2016-12-30 | 2020-11-24 | Amazon Technologies, Inc. | Contextual presence |
US10869253B2 (en) | 2015-06-02 | 2020-12-15 | Liveperson, Inc. | Dynamic communication routing based on consistency weighting and routing rules |
US11004089B2 (en) * | 2005-10-25 | 2021-05-11 | Sony Interactive Entertainment LLC | Associating media content files with advertisements |
US11386442B2 (en) | 2014-03-31 | 2022-07-12 | Liveperson, Inc. | Online behavioral predictor |
US11558713B1 (en) | 2016-12-30 | 2023-01-17 | Amazon Technologies, Inc. | Contextual presence |
Families Citing this family (126)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1418514A1 (en) * | 2002-11-05 | 2004-05-12 | THOMSON Licensing S.A. | Selecting advertisement on a set top box in a television network |
GB0317304D0 (en) * | 2003-07-24 | 2003-08-27 | Hewlett Packard Development Co | An analysis apparatus arranged to analyse data and detect change and related methods |
US20050203948A1 (en) * | 2004-03-15 | 2005-09-15 | De La Rosa Josep Lluis | Method for influencing market decisions of people |
US7689490B2 (en) * | 2004-05-28 | 2010-03-30 | Morgan Stanley | Matching resources of a securities research department to accounts of the department |
US10373173B2 (en) * | 2004-06-14 | 2019-08-06 | Facebook, Inc. | Online content delivery based on information from social networks |
US10585934B2 (en) | 2005-10-26 | 2020-03-10 | Cortica Ltd. | Method and system for populating a concept database with respect to user identifiers |
US10193990B2 (en) | 2005-10-26 | 2019-01-29 | Cortica Ltd. | System and method for creating user profiles based on multimedia content |
US9767143B2 (en) | 2005-10-26 | 2017-09-19 | Cortica, Ltd. | System and method for caching of concept structures |
US10387914B2 (en) | 2005-10-26 | 2019-08-20 | Cortica, Ltd. | Method for identification of multimedia content elements and adding advertising content respective thereof |
US9384196B2 (en) | 2005-10-26 | 2016-07-05 | Cortica, Ltd. | Signature generation for multimedia deep-content-classification by a large-scale matching system and method thereof |
US10607355B2 (en) | 2005-10-26 | 2020-03-31 | Cortica, Ltd. | Method and system for determining the dimensions of an object shown in a multimedia content item |
US8326775B2 (en) | 2005-10-26 | 2012-12-04 | Cortica Ltd. | Signature generation for multimedia deep-content-classification by a large-scale matching system and method thereof |
US10949773B2 (en) | 2005-10-26 | 2021-03-16 | Cortica, Ltd. | System and methods thereof for recommending tags for multimedia content elements based on context |
US11003706B2 (en) | 2005-10-26 | 2021-05-11 | Cortica Ltd | System and methods for determining access permissions on personalized clusters of multimedia content elements |
US10776585B2 (en) | 2005-10-26 | 2020-09-15 | Cortica, Ltd. | System and method for recognizing characters in multimedia content |
US11019161B2 (en) | 2005-10-26 | 2021-05-25 | Cortica, Ltd. | System and method for profiling users interest based on multimedia content analysis |
US10535192B2 (en) | 2005-10-26 | 2020-01-14 | Cortica Ltd. | System and method for generating a customized augmented reality environment to a user |
US11386139B2 (en) | 2005-10-26 | 2022-07-12 | Cortica Ltd. | System and method for generating analytics for entities depicted in multimedia content |
US10380164B2 (en) | 2005-10-26 | 2019-08-13 | Cortica, Ltd. | System and method for using on-image gestures and multimedia content elements as search queries |
US8818916B2 (en) | 2005-10-26 | 2014-08-26 | Cortica, Ltd. | System and method for linking multimedia data elements to web pages |
US10621988B2 (en) | 2005-10-26 | 2020-04-14 | Cortica Ltd | System and method for speech to text translation using cores of a natural liquid architecture system |
US11032017B2 (en) | 2005-10-26 | 2021-06-08 | Cortica, Ltd. | System and method for identifying the context of multimedia content elements |
US10372746B2 (en) | 2005-10-26 | 2019-08-06 | Cortica, Ltd. | System and method for searching applications using multimedia content elements |
US10848590B2 (en) | 2005-10-26 | 2020-11-24 | Cortica Ltd | System and method for determining a contextual insight and providing recommendations based thereon |
US11216498B2 (en) | 2005-10-26 | 2022-01-04 | Cortica, Ltd. | System and method for generating signatures to three-dimensional multimedia data elements |
US10360253B2 (en) | 2005-10-26 | 2019-07-23 | Cortica, Ltd. | Systems and methods for generation of searchable structures respective of multimedia data content |
US9646005B2 (en) | 2005-10-26 | 2017-05-09 | Cortica, Ltd. | System and method for creating a database of multimedia content elements assigned to users |
US10380267B2 (en) | 2005-10-26 | 2019-08-13 | Cortica, Ltd. | System and method for tagging multimedia content elements |
US8312031B2 (en) | 2005-10-26 | 2012-11-13 | Cortica Ltd. | System and method for generation of complex signatures for multimedia data content |
US10191976B2 (en) | 2005-10-26 | 2019-01-29 | Cortica, Ltd. | System and method of detecting common patterns within unstructured data elements retrieved from big data sources |
US9372940B2 (en) | 2005-10-26 | 2016-06-21 | Cortica, Ltd. | Apparatus and method for determining user attention using a deep-content-classification (DCC) system |
US10635640B2 (en) | 2005-10-26 | 2020-04-28 | Cortica, Ltd. | System and method for enriching a concept database |
US9477658B2 (en) | 2005-10-26 | 2016-10-25 | Cortica, Ltd. | Systems and method for speech to speech translation using cores of a natural liquid architecture system |
US10691642B2 (en) | 2005-10-26 | 2020-06-23 | Cortica Ltd | System and method for enriching a concept database with homogenous concepts |
US10614626B2 (en) | 2005-10-26 | 2020-04-07 | Cortica Ltd. | System and method for providing augmented reality challenges |
US10180942B2 (en) | 2005-10-26 | 2019-01-15 | Cortica Ltd. | System and method for generation of concept structures based on sub-concepts |
US11604847B2 (en) | 2005-10-26 | 2023-03-14 | Cortica Ltd. | System and method for overlaying content on a multimedia content element based on user interest |
US10742340B2 (en) | 2005-10-26 | 2020-08-11 | Cortica Ltd. | System and method for identifying the context of multimedia content elements displayed in a web-page and providing contextual filters respective thereto |
US11361014B2 (en) | 2005-10-26 | 2022-06-14 | Cortica Ltd. | System and method for completing a user profile |
US10380623B2 (en) * | 2005-10-26 | 2019-08-13 | Cortica, Ltd. | System and method for generating an advertisement effectiveness performance score |
US20160321253A1 (en) | 2005-10-26 | 2016-11-03 | Cortica, Ltd. | System and method for providing recommendations based on user profiles |
US9218606B2 (en) | 2005-10-26 | 2015-12-22 | Cortica, Ltd. | System and method for brand monitoring and trend analysis based on deep-content-classification |
US11403336B2 (en) | 2005-10-26 | 2022-08-02 | Cortica Ltd. | System and method for removing contextually identical multimedia content elements |
US11620327B2 (en) | 2005-10-26 | 2023-04-04 | Cortica Ltd | System and method for determining a contextual insight and generating an interface with recommendations based thereon |
US9953032B2 (en) | 2005-10-26 | 2018-04-24 | Cortica, Ltd. | System and method for characterization of multimedia content signals using cores of a natural liquid architecture system |
US20070239534A1 (en) * | 2006-03-29 | 2007-10-11 | Hongche Liu | Method and apparatus for selecting advertisements to serve using user profiles, performance scores, and advertisement revenue information |
US10733326B2 (en) | 2006-10-26 | 2020-08-04 | Cortica Ltd. | System and method for identification of inappropriate multimedia content |
US20080140481A1 (en) * | 2006-12-06 | 2008-06-12 | Josh Todd Gold | Method and system for generating advertisement |
US20080195461A1 (en) * | 2007-02-13 | 2008-08-14 | Sbc Knowledge Ventures L.P. | System and method for host web site profiling |
US8301623B2 (en) | 2007-05-22 | 2012-10-30 | Amazon Technologies, Inc. | Probabilistic recommendation system |
US8219447B1 (en) * | 2007-06-06 | 2012-07-10 | Amazon Technologies, Inc. | Real-time adaptive probabilistic selection of messages |
US20090012853A1 (en) * | 2007-07-03 | 2009-01-08 | Right Media, Inc. | Inferring legitimacy of advertisement calls |
US7908238B1 (en) * | 2007-08-31 | 2011-03-15 | Yahoo! Inc. | Prediction engines using probability tree and computing node probabilities for the probability tree |
US8583524B2 (en) * | 2008-05-06 | 2013-11-12 | Richrelevance, Inc. | System and process for improving recommendations for use in providing personalized advertisements to retail customers |
US8364528B2 (en) * | 2008-05-06 | 2013-01-29 | Richrelevance, Inc. | System and process for improving product recommendations for use in providing personalized advertisements to retail customers |
US8108329B2 (en) * | 2008-05-06 | 2012-01-31 | Richrelevance, Inc. | System and process for boosting recommendations for use in providing personalized advertisements to retail customers |
US8019642B2 (en) * | 2008-05-06 | 2011-09-13 | Richrelevance, Inc. | System and process for receiving boosting recommendations for use in providing personalized advertisements to retail customers |
US20090282014A1 (en) * | 2008-05-07 | 2009-11-12 | Yahoo! Inc. | Systems and Methods for Predicting a Degree of Relevance Between Digital Ads and a Search Query |
US20090282015A1 (en) * | 2008-05-07 | 2009-11-12 | Yahoo! Inc. | Systems and Methods for Predicting a Degree of Relevance Between Digital Ads and Webpage Content |
US8887194B2 (en) * | 2008-06-19 | 2014-11-11 | Verizon Patent And Licensing Inc. | Method and system for providing interactive advertisement customization |
US8224698B2 (en) * | 2008-07-03 | 2012-07-17 | The Search Agency, Inc. | System and method for determining weighted average success probabilities of internet advertisements |
US20100153185A1 (en) * | 2008-12-01 | 2010-06-17 | Topsy Labs, Inc. | Mediating and pricing transactions based on calculated reputation or influence scores |
EP2359275A4 (en) * | 2008-12-01 | 2013-01-23 | Topsy Labs Inc | Estimating influence |
WO2010065109A1 (en) * | 2008-12-01 | 2010-06-10 | Topsy Labs, Inc. | Advertising based on influence |
JP5640015B2 (en) | 2008-12-01 | 2014-12-10 | トプシー ラブズ インコーポレイテッド | Ranking and selection entities based on calculated reputation or impact scores |
US11036810B2 (en) | 2009-12-01 | 2021-06-15 | Apple Inc. | System and method for determining quality of cited objects in search results based on the influence of citing subjects |
US11122009B2 (en) | 2009-12-01 | 2021-09-14 | Apple Inc. | Systems and methods for identifying geographic locations of social media content collected over social networks |
US9129017B2 (en) | 2009-12-01 | 2015-09-08 | Apple Inc. | System and method for metadata transfer among search entities |
US9454586B2 (en) | 2009-12-01 | 2016-09-27 | Apple Inc. | System and method for customizing analytics based on users media affiliation status |
US9280597B2 (en) | 2009-12-01 | 2016-03-08 | Apple Inc. | System and method for customizing search results from user's perspective |
US11113299B2 (en) | 2009-12-01 | 2021-09-07 | Apple Inc. | System and method for metadata transfer among search entities |
US8892541B2 (en) | 2009-12-01 | 2014-11-18 | Topsy Labs, Inc. | System and method for query temporality analysis |
US9110979B2 (en) | 2009-12-01 | 2015-08-18 | Apple Inc. | Search of sources and targets based on relative expertise of the sources |
US8533043B2 (en) * | 2010-03-31 | 2013-09-10 | Yahoo! Inc. | Clickable terms for contextual advertising |
US20120046996A1 (en) * | 2010-08-17 | 2012-02-23 | Vishal Shah | Unified data management platform |
EP2747014A1 (en) | 2011-02-23 | 2014-06-25 | Bottlenose, Inc. | Adaptive system architecture for identifying popular topics from messages |
EP2727065A4 (en) * | 2011-07-01 | 2015-01-28 | Dataxu Inc | CREATING AND USING USER EVALUATED IDENTIFIERS IN AN ADVERTISEMENT PLACEMENT FACILITY |
US8694413B1 (en) * | 2011-09-29 | 2014-04-08 | Morgan Stanley & Co. Llc | Computer-based systems and methods for determining interest levels of consumers in research work product produced by a research department |
US9189797B2 (en) | 2011-10-26 | 2015-11-17 | Apple Inc. | Systems and methods for sentiment detection, measurement, and normalization over social networks |
US8832092B2 (en) | 2012-02-17 | 2014-09-09 | Bottlenose, Inc. | Natural language processing optimized for micro content |
US9009126B2 (en) | 2012-07-31 | 2015-04-14 | Bottlenose, Inc. | Discovering and ranking trending links about topics |
US8762302B1 (en) | 2013-02-22 | 2014-06-24 | Bottlenose, Inc. | System and method for revealing correlations between data streams |
US10185975B2 (en) | 2015-02-04 | 2019-01-22 | Adobe Systems Incorporated | Predicting unsubscription of potential customers |
US10762517B2 (en) * | 2015-07-01 | 2020-09-01 | Ebay Inc. | Subscription churn prediction |
US11037015B2 (en) | 2015-12-15 | 2021-06-15 | Cortica Ltd. | Identification of key points in multimedia data elements |
US11195043B2 (en) | 2015-12-15 | 2021-12-07 | Cortica, Ltd. | System and method for determining common patterns in multimedia content elements based on key points |
EP3410309A1 (en) * | 2016-01-25 | 2018-12-05 | Sony Corporation | Communication system and communication control method |
US10997515B2 (en) * | 2017-02-03 | 2021-05-04 | Adxcel Inc. | Fast multi-step optimization technique to determine high performance cluster |
US10733378B2 (en) * | 2017-03-17 | 2020-08-04 | Baydin, Inc. | Analysis of message quality in a networked computer system |
WO2019008581A1 (en) | 2017-07-05 | 2019-01-10 | Cortica Ltd. | Driving policies determination |
US11899707B2 (en) | 2017-07-09 | 2024-02-13 | Cortica Ltd. | Driving policies determination |
US20190043093A1 (en) * | 2017-08-03 | 2019-02-07 | Facebook, Inc. | Dynamic content item format determination |
US10943184B2 (en) | 2017-09-14 | 2021-03-09 | Amadeus S.A.S. | Machine learning methods and systems for predicting online user interactions |
FR3071086A1 (en) * | 2017-09-14 | 2019-03-15 | Amadeus S.A.S. | A METHOD AND SYSTEM FOR AN INTELLIGENT ADAPTIVE OFFER IN AN AUTOMATED ONLINE EXCHANGE NETWORK |
CN111052167A (en) * | 2017-09-14 | 2020-04-21 | 艾玛迪斯简易股份公司 | Method and system for intelligent adaptive bidding in automated online trading network |
US11120480B2 (en) | 2017-09-14 | 2021-09-14 | Amadeus S.A.S. | Systems and methods for real-time online traveler segmentation using machine learning |
US10846544B2 (en) | 2018-07-16 | 2020-11-24 | Cartica Ai Ltd. | Transportation prediction system and method |
US11181911B2 (en) | 2018-10-18 | 2021-11-23 | Cartica Ai Ltd | Control transfer of a vehicle |
US11126870B2 (en) | 2018-10-18 | 2021-09-21 | Cartica Ai Ltd. | Method and system for obstacle detection |
US10839694B2 (en) | 2018-10-18 | 2020-11-17 | Cartica Ai Ltd | Blind spot alert |
US20200133308A1 (en) | 2018-10-18 | 2020-04-30 | Cartica Ai Ltd | Vehicle to vehicle (v2v) communication less truck platooning |
US11700356B2 (en) | 2018-10-26 | 2023-07-11 | AutoBrains Technologies Ltd. | Control transfer of a vehicle |
US10748038B1 (en) | 2019-03-31 | 2020-08-18 | Cortica Ltd. | Efficient calculation of a robust signature of a media unit |
US10789535B2 (en) | 2018-11-26 | 2020-09-29 | Cartica Ai Ltd | Detection of road elements |
US20200193351A1 (en) * | 2018-12-15 | 2020-06-18 | Cadreon LLC | Value Index Score |
US11643005B2 (en) | 2019-02-27 | 2023-05-09 | Autobrains Technologies Ltd | Adjusting adjustable headlights of a vehicle |
US11285963B2 (en) | 2019-03-10 | 2022-03-29 | Cartica Ai Ltd. | Driver-based prediction of dangerous events |
US11694088B2 (en) | 2019-03-13 | 2023-07-04 | Cortica Ltd. | Method for object detection using knowledge distillation |
US11132548B2 (en) | 2019-03-20 | 2021-09-28 | Cortica Ltd. | Determining object information that does not explicitly appear in a media unit signature |
US12055408B2 (en) | 2019-03-28 | 2024-08-06 | Autobrains Technologies Ltd | Estimating a movement of a hybrid-behavior vehicle |
US11222069B2 (en) | 2019-03-31 | 2022-01-11 | Cortica Ltd. | Low-power calculation of a signature of a media unit |
US10796444B1 (en) | 2019-03-31 | 2020-10-06 | Cortica Ltd | Configuring spanning elements of a signature generator |
US10776669B1 (en) | 2019-03-31 | 2020-09-15 | Cortica Ltd. | Signature generation and object detection that refer to rare scenes |
US10789527B1 (en) | 2019-03-31 | 2020-09-29 | Cortica Ltd. | Method for object detection using shallow neural networks |
CN110706029A (en) * | 2019-09-26 | 2020-01-17 | 恩亿科(北京)数据科技有限公司 | Advertisement targeted delivery method and device, electronic equipment and storage medium |
US11593662B2 (en) | 2019-12-12 | 2023-02-28 | Autobrains Technologies Ltd | Unsupervised cluster generation |
US10748022B1 (en) | 2019-12-12 | 2020-08-18 | Cartica Ai Ltd | Crowd separation |
US11590988B2 (en) | 2020-03-19 | 2023-02-28 | Autobrains Technologies Ltd | Predictive turning assistant |
US11827215B2 (en) | 2020-03-31 | 2023-11-28 | AutoBrains Technologies Ltd. | Method for training a driving related object detector |
US11756424B2 (en) | 2020-07-24 | 2023-09-12 | AutoBrains Technologies Ltd. | Parking assist |
US12049116B2 (en) | 2020-09-30 | 2024-07-30 | Autobrains Technologies Ltd | Configuring an active suspension |
CN114415163A (en) | 2020-10-13 | 2022-04-29 | 奥特贝睿技术有限公司 | Camera-based distance measurement |
US12257949B2 (en) | 2021-01-25 | 2025-03-25 | Autobrains Technologies Ltd | Alerting on driving affecting signal |
US12139166B2 (en) | 2021-06-07 | 2024-11-12 | Autobrains Technologies Ltd | Cabin preferences setting that is based on identification of one or more persons in the cabin |
US12110075B2 (en) | 2021-08-05 | 2024-10-08 | AutoBrains Technologies Ltd. | Providing a prediction of a radius of a motorcycle turn |
US12293560B2 (en) | 2021-10-26 | 2025-05-06 | Autobrains Technologies Ltd | Context based separation of on-/off-vehicle points of interest in videos |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5373773A (en) * | 1981-08-06 | 1994-12-20 | The United States Of American As Represented By The Secretary Of The Navy | Anti-torpedo stern defense system |
US6314451B1 (en) * | 1998-05-15 | 2001-11-06 | Unicast Communications Corporation | Ad controller for use in implementing user-transparent network-distributed advertising and for interstitially displaying an advertisement so distributed |
US6430539B1 (en) * | 1999-05-06 | 2002-08-06 | Hnc Software | Predictive modeling of consumer financial behavior |
US20020174182A1 (en) * | 2001-05-15 | 2002-11-21 | Wilkinson William K. | Real time electronic service interaction management system and method |
US20030046161A1 (en) * | 2001-09-06 | 2003-03-06 | Kamangar Salar Arta | Methods and apparatus for ordering advertisements based on performance information and price information |
US20030055729A1 (en) * | 1999-11-10 | 2003-03-20 | Bezos Jeffrey P. | Method and system for allocating display space |
US20030110112A1 (en) * | 1999-12-30 | 2003-06-12 | Johnson Christopher D. | Methods and systems for automated inferred valuation of credit scoring |
US6591248B1 (en) * | 1998-11-27 | 2003-07-08 | Nec Corporation | Banner advertisement selecting method |
US20030139963A1 (en) * | 2000-12-08 | 2003-07-24 | Chickering D. Maxwell | Decision theoretic approach to targeted solicitation by maximizing expected profit increases |
US6836773B2 (en) * | 2000-09-28 | 2004-12-28 | Oracle International Corporation | Enterprise web mining system and method |
US6901406B2 (en) * | 1999-12-29 | 2005-05-31 | General Electric Capital Corporation | Methods and systems for accessing multi-dimensional customer data |
US7003476B1 (en) * | 1999-12-29 | 2006-02-21 | General Electric Capital Corporation | Methods and systems for defining targeted marketing campaigns using embedded models and historical data |
US7039599B2 (en) * | 1997-06-16 | 2006-05-02 | Doubleclick Inc. | Method and apparatus for automatic placement of advertising |
US20060230053A1 (en) * | 2001-04-19 | 2006-10-12 | Prime Research Alliance E., Inc. | Consumer profiling and advertisement selection system |
-
2002
- 2002-06-05 US US10/163,056 patent/US7370002B2/en not_active Expired - Fee Related
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5373773A (en) * | 1981-08-06 | 1994-12-20 | The United States Of American As Represented By The Secretary Of The Navy | Anti-torpedo stern defense system |
US7039599B2 (en) * | 1997-06-16 | 2006-05-02 | Doubleclick Inc. | Method and apparatus for automatic placement of advertising |
US6314451B1 (en) * | 1998-05-15 | 2001-11-06 | Unicast Communications Corporation | Ad controller for use in implementing user-transparent network-distributed advertising and for interstitially displaying an advertisement so distributed |
US6591248B1 (en) * | 1998-11-27 | 2003-07-08 | Nec Corporation | Banner advertisement selecting method |
US6430539B1 (en) * | 1999-05-06 | 2002-08-06 | Hnc Software | Predictive modeling of consumer financial behavior |
US20030055729A1 (en) * | 1999-11-10 | 2003-03-20 | Bezos Jeffrey P. | Method and system for allocating display space |
US7003476B1 (en) * | 1999-12-29 | 2006-02-21 | General Electric Capital Corporation | Methods and systems for defining targeted marketing campaigns using embedded models and historical data |
US6901406B2 (en) * | 1999-12-29 | 2005-05-31 | General Electric Capital Corporation | Methods and systems for accessing multi-dimensional customer data |
US20030110112A1 (en) * | 1999-12-30 | 2003-06-12 | Johnson Christopher D. | Methods and systems for automated inferred valuation of credit scoring |
US6836773B2 (en) * | 2000-09-28 | 2004-12-28 | Oracle International Corporation | Enterprise web mining system and method |
US20030139963A1 (en) * | 2000-12-08 | 2003-07-24 | Chickering D. Maxwell | Decision theoretic approach to targeted solicitation by maximizing expected profit increases |
US20060230053A1 (en) * | 2001-04-19 | 2006-10-12 | Prime Research Alliance E., Inc. | Consumer profiling and advertisement selection system |
US20020174182A1 (en) * | 2001-05-15 | 2002-11-21 | Wilkinson William K. | Real time electronic service interaction management system and method |
US20030046161A1 (en) * | 2001-09-06 | 2003-03-06 | Kamangar Salar Arta | Methods and apparatus for ordering advertisements based on performance information and price information |
Non-Patent Citations (10)
Title |
---|
An Entropy Approach to Unintrusive Targeted Advertising on the Web, J.A. Tomlin, Computer Networks, Publ. by Elsevier, Netherlands, Jun. 2000, vol. 33, No. 1-6, pp. 767-774. |
An MFR-Basedweb Log Clustering Approach and its Application, Lin Yuh-Chi and P. Hadingham, Proceedings of the International ICSC Congress on Computational Intelligence Methods and Applications, Publ. by ICSC Academic Press, Zurich, Switzerland, 1999. |
Apte et al., Segmentation-Based Modeling for Advanced Targeted Marketing, Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining 2001, San Francisco, California Aug. 26-29, 2001. * |
Chickering and Heckerman, A Decision Theoretic Approach to Targeted Advertising, Microsoft Research Publications, Feb. 2000. * |
Identifying Locations for Targeted Advertising on the Internet, A. Bhatnagar and P. Papatla, International Journal of Electronic Commerce, Publ. by M.E. Sharpe, USA, Spring 2001, vol. 5, No. 3, pp. 23-44. |
Informative Narrowcasting with Consumer Search, R. Dewan et al., Proceedings of the 35th Annual Hawaii International Conference on System Sciences. Publ. by IEEE Comput. Soc., Los Alamitos, CA, USA, 2002, pp. 1-6. |
Madeira and Sousa, Comparison of target selection methods in direct marketing, eunite 2002, Sep. 19-21, 2002, Algarve, Portugal, p. 333-338. * |
Natarajan and Pednault, Segmented Regression Estimators for Massive Data Sets, Second SIAM international conference on data mining, Apr. 11-13, 2002. * |
Targeted Advertising . . . and Privacy Too, A. Juels, Topics in Cryptology-CT-RSA 2001. The Cryptographers' Track at RSA Conference 2001 Proceedings (Lecture Notes in Computer Science), Publ. by Springer-Verlag, Berlin, Germany, 2001, vol. 2020, pp. 408-424. |
Thomas, A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers, Int. J. Forecasting 16 (2000) 149-172. * |
Cited By (188)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8892495B2 (en) | 1991-12-23 | 2014-11-18 | Blanding Hovenweep, Llc | Adaptive pattern recognition based controller apparatus and method and human-interface therefore |
US9535563B2 (en) | 1999-02-01 | 2017-01-03 | Blanding Hovenweep, Llc | Internet appliance system and method |
US10390101B2 (en) | 1999-12-02 | 2019-08-20 | Sony Interactive Entertainment America Llc | Advertisement rotation |
US9015747B2 (en) | 1999-12-02 | 2015-04-21 | Sony Computer Entertainment America Llc | Advertisement rotation |
US8868448B2 (en) | 2000-10-26 | 2014-10-21 | Liveperson, Inc. | Systems and methods to facilitate selling of products and services |
US9819561B2 (en) | 2000-10-26 | 2017-11-14 | Liveperson, Inc. | System and methods for facilitating object assignments |
US9576292B2 (en) | 2000-10-26 | 2017-02-21 | Liveperson, Inc. | Systems and methods to facilitate selling of products and services |
US10797976B2 (en) | 2000-10-26 | 2020-10-06 | Liveperson, Inc. | System and methods for facilitating object assignments |
US9466074B2 (en) | 2001-02-09 | 2016-10-11 | Sony Interactive Entertainment America Llc | Advertising impression determination |
US9195991B2 (en) | 2001-02-09 | 2015-11-24 | Sony Computer Entertainment America Llc | Display of user selected advertising content in a digital environment |
US9984388B2 (en) | 2001-02-09 | 2018-05-29 | Sony Interactive Entertainment America Llc | Advertising impression determination |
US20090024409A1 (en) * | 2002-02-06 | 2009-01-22 | Ryan Steelberg | Apparatus, system and method for a brand affinity engine using positive and negative mentions |
US20090210246A1 (en) * | 2002-08-19 | 2009-08-20 | Choicestream, Inc. | Statistical personalized recommendation system |
US7742944B2 (en) * | 2003-03-10 | 2010-06-22 | Amazon Technologies, Inc. | Method for selecting relevant campaign messages for transmission to recipients |
US20040204989A1 (en) * | 2003-03-10 | 2004-10-14 | Russell Dicker | Method for selecting relevant campaign messages for transmission to recipients |
US7873541B1 (en) * | 2004-02-11 | 2011-01-18 | SQAD, Inc. | System and method for aggregating advertising pricing data |
US9531686B2 (en) | 2004-08-23 | 2016-12-27 | Sony Interactive Entertainment America Llc | Statutory license restricted digital media playback on portable devices |
US8763157B2 (en) | 2004-08-23 | 2014-06-24 | Sony Computer Entertainment America Llc | Statutory license restricted digital media playback on portable devices |
US10042987B2 (en) | 2004-08-23 | 2018-08-07 | Sony Interactive Entertainment America Llc | Statutory license restricted digital media playback on portable devices |
US20100138303A1 (en) * | 2005-02-04 | 2010-06-03 | Cellfire Inc. | Delivering targeted advertising to mobile devices |
US20060190330A1 (en) * | 2005-02-04 | 2006-08-24 | Preston Tollinger | Delivering targeted advertising to mobile devices |
US20060190331A1 (en) * | 2005-02-04 | 2006-08-24 | Preston Tollinger | Delivering targeted advertising to mobile devices |
US11042905B2 (en) | 2005-02-04 | 2021-06-22 | Cellfire Llc | Delivering targeted advertising to mobile devices |
US11972458B2 (en) | 2005-02-04 | 2024-04-30 | Cellfire Llc | Delivering targeted advertising to mobile devices |
US10628854B2 (en) | 2005-02-04 | 2020-04-21 | Cellfire Llc | Delivering targeted advertising to mobile devices |
US20090030779A1 (en) * | 2005-02-04 | 2009-01-29 | Preston Tollinger | Electronic coupon filtering and delivery |
US9785973B2 (en) | 2005-02-04 | 2017-10-10 | Cellfire Inc. | Delivering targeted advertising to mobile devices |
US20100138299A1 (en) * | 2005-02-04 | 2010-06-03 | Cellfire Inc. | Delivering targeted advertising to mobile devices |
US9298677B2 (en) | 2005-02-04 | 2016-03-29 | Cellfire Inc. | Delivering targeted advertising to mobile devices |
US20060294084A1 (en) * | 2005-06-28 | 2006-12-28 | Patel Jayendu S | Methods and apparatus for a statistical system for targeting advertisements |
US7818208B1 (en) | 2005-06-28 | 2010-10-19 | Google Inc. | Accurately estimating advertisement performance |
US20070027753A1 (en) * | 2005-07-29 | 2007-02-01 | Collins Robert J | System and method for optimizing the delivery of advertisements |
US7685019B2 (en) * | 2005-07-29 | 2010-03-23 | Yahoo! Inc. | System and method for optimizing the delivery of advertisements |
US11526253B2 (en) | 2005-09-14 | 2022-12-13 | Liveperson, Inc. | System and method for design and dynamic generation of a web page |
US9590930B2 (en) | 2005-09-14 | 2017-03-07 | Liveperson, Inc. | System and method for performing follow up based on user interactions |
US8738732B2 (en) | 2005-09-14 | 2014-05-27 | Liveperson, Inc. | System and method for performing follow up based on user interactions |
US10191622B2 (en) | 2005-09-14 | 2019-01-29 | Liveperson, Inc. | System and method for design and dynamic generation of a web page |
US9525745B2 (en) | 2005-09-14 | 2016-12-20 | Liveperson, Inc. | System and method for performing follow up based on user interactions |
US11394670B2 (en) | 2005-09-14 | 2022-07-19 | Liveperson, Inc. | System and method for performing follow up based on user interactions |
US11743214B2 (en) | 2005-09-14 | 2023-08-29 | Liveperson, Inc. | System and method for performing follow up based on user interactions |
US9432468B2 (en) | 2005-09-14 | 2016-08-30 | Liveperson, Inc. | System and method for design and dynamic generation of a web page |
US9948582B2 (en) | 2005-09-14 | 2018-04-17 | Liveperson, Inc. | System and method for performing follow up based on user interactions |
US8751310B2 (en) | 2005-09-30 | 2014-06-10 | Sony Computer Entertainment America Llc | Monitoring advertisement impressions |
US9129301B2 (en) | 2005-09-30 | 2015-09-08 | Sony Computer Entertainment America Llc | Display of user selected advertising content in a digital environment |
US20070078989A1 (en) * | 2005-09-30 | 2007-04-05 | Van Datta Glen | Population of an Advertisement Reference List |
US8626584B2 (en) | 2005-09-30 | 2014-01-07 | Sony Computer Entertainment America Llc | Population of an advertisement reference list |
US10789611B2 (en) | 2005-09-30 | 2020-09-29 | Sony Interactive Entertainment LLC | Advertising impression determination |
US8574074B2 (en) | 2005-09-30 | 2013-11-05 | Sony Computer Entertainment America Llc | Advertising impression determination |
US10046239B2 (en) | 2005-09-30 | 2018-08-14 | Sony Interactive Entertainment America Llc | Monitoring advertisement impressions |
US10467651B2 (en) | 2005-09-30 | 2019-11-05 | Sony Interactive Entertainment America Llc | Advertising impression determination |
US9873052B2 (en) | 2005-09-30 | 2018-01-23 | Sony Interactive Entertainment America Llc | Monitoring advertisement impressions |
US20070078668A1 (en) * | 2005-09-30 | 2007-04-05 | Dimpy Pathria | Authentication ID interview method and apparatus |
US8795076B2 (en) | 2005-09-30 | 2014-08-05 | Sony Computer Entertainment America Llc | Advertising impression determination |
US11436630B2 (en) | 2005-09-30 | 2022-09-06 | Sony Interactive Entertainment LLC | Advertising impression determination |
US20070088605A1 (en) * | 2005-10-19 | 2007-04-19 | Yahoo! Inc. | System and method for achieving linear advertisement impression delivery under uneven, volatile traffic conditions |
US11004089B2 (en) * | 2005-10-25 | 2021-05-11 | Sony Interactive Entertainment LLC | Associating media content files with advertisements |
US11195185B2 (en) | 2005-10-25 | 2021-12-07 | Sony Interactive Entertainment LLC | Asynchronous advertising |
US10657538B2 (en) * | 2005-10-25 | 2020-05-19 | Sony Interactive Entertainment LLC | Resolution of advertising rules |
US9864998B2 (en) | 2005-10-25 | 2018-01-09 | Sony Interactive Entertainment America Llc | Asynchronous advertising |
US10410248B2 (en) | 2005-10-25 | 2019-09-10 | Sony Interactive Entertainment America Llc | Asynchronous advertising placement based on metadata |
US8676900B2 (en) | 2005-10-25 | 2014-03-18 | Sony Computer Entertainment America Llc | Asynchronous advertising placement based on metadata |
US20070094083A1 (en) * | 2005-10-25 | 2007-04-26 | Podbridge, Inc. | Matching ads to content and users for time and space shifted media network |
US9367862B2 (en) | 2005-10-25 | 2016-06-14 | Sony Interactive Entertainment America Llc | Asynchronous advertising placement based on metadata |
US20070094363A1 (en) * | 2005-10-25 | 2007-04-26 | Podbridge, Inc. | Configuration for ad and content delivery in time and space shifted media network |
US20070094081A1 (en) * | 2005-10-25 | 2007-04-26 | Podbridge, Inc. | Resolution of rules for association of advertising and content in a time and space shifted media network |
US10891662B2 (en) | 2005-12-30 | 2021-01-12 | Google Llc | Advertising with video ad creatives |
US8429012B2 (en) | 2005-12-30 | 2013-04-23 | Google Inc. | Using estimated ad qualities for ad filtering, ranking and promotion |
US10108988B2 (en) | 2005-12-30 | 2018-10-23 | Google Llc | Advertising with video ad creatives |
US20070156621A1 (en) * | 2005-12-30 | 2007-07-05 | Daniel Wright | Using estimated ad qualities for ad filtering, ranking and promotion |
US11403677B2 (en) | 2005-12-30 | 2022-08-02 | Google Llc | Inserting video content in multi-media documents |
US20110015988A1 (en) * | 2005-12-30 | 2011-01-20 | Google Inc. | Using estimated ad qualities for ad filtering, ranking and promotion |
US10949895B2 (en) | 2005-12-30 | 2021-03-16 | Google Llc | Video content including content item slots |
US11403676B2 (en) | 2005-12-30 | 2022-08-02 | Google Llc | Interleaving video content in a multi-media document using keywords extracted from accompanying audio |
US7827060B2 (en) | 2005-12-30 | 2010-11-02 | Google Inc. | Using estimated ad qualities for ad filtering, ranking and promotion |
US10600090B2 (en) | 2005-12-30 | 2020-03-24 | Google Llc | Query feature based data structure retrieval of predicted values |
US11587128B2 (en) | 2005-12-30 | 2023-02-21 | Google Llc | Verifying presentation of video content |
US8065184B2 (en) * | 2005-12-30 | 2011-11-22 | Google Inc. | Estimating ad quality from observed user behavior |
US20070156514A1 (en) * | 2005-12-30 | 2007-07-05 | Daniel Wright | Estimating ad quality from observed user behavior |
US20070156887A1 (en) * | 2005-12-30 | 2007-07-05 | Daniel Wright | Predicting ad quality |
US10679261B2 (en) | 2005-12-30 | 2020-06-09 | Google Llc | Interleaving video content in a multi-media document using keywords extracted from accompanying audio |
US10706444B2 (en) | 2005-12-30 | 2020-07-07 | Google Llc | Inserting video content in multi-media documents |
US20090083788A1 (en) * | 2006-05-05 | 2009-03-26 | Russell Riley R | Advertisement Rotation |
US8645992B2 (en) | 2006-05-05 | 2014-02-04 | Sony Computer Entertainment America Llc | Advertisement rotation |
US20080005098A1 (en) * | 2006-06-30 | 2008-01-03 | Holt Alexander W | System for using business value of performance metrics to adaptively select web content |
US8712382B2 (en) | 2006-10-27 | 2014-04-29 | Apple Inc. | Method and device for managing subscriber connection |
US8175989B1 (en) | 2007-01-04 | 2012-05-08 | Choicestream, Inc. | Music recommendation system using a personalized choice set |
US20080228893A1 (en) * | 2007-03-12 | 2008-09-18 | Cvon Innovations Limited | Advertising management system and method with dynamic pricing |
US8352320B2 (en) | 2007-03-12 | 2013-01-08 | Apple Inc. | Advertising management system and method with dynamic pricing |
US8935718B2 (en) | 2007-05-22 | 2015-01-13 | Apple Inc. | Advertising management method and system |
US8595851B2 (en) | 2007-05-22 | 2013-11-26 | Apple Inc. | Message delivery management method and system |
US20090144130A1 (en) * | 2007-07-13 | 2009-06-04 | Grouf Nicholas A | Methods and systems for predicting future data |
US8478240B2 (en) | 2007-09-05 | 2013-07-02 | Apple Inc. | Systems, methods, network elements and applications for modifying messages |
US20090068991A1 (en) * | 2007-09-05 | 2009-03-12 | Janne Aaltonen | Systems, methods, network elements and applications for modifying messages |
US20090070207A1 (en) * | 2007-09-10 | 2009-03-12 | Cellfire | Electronic coupon display system and method |
US8719091B2 (en) | 2007-10-15 | 2014-05-06 | Apple Inc. | System, method and computer program for determining tags to insert in communications |
US20130204954A1 (en) * | 2007-11-05 | 2013-08-08 | Timothy A. Kendall | Communicating information in a social networking website about activities from another domain |
US9525902B2 (en) | 2008-02-12 | 2016-12-20 | Sony Interactive Entertainment America Llc | Discovery and analytics for episodic downloaded media |
US8769558B2 (en) | 2008-02-12 | 2014-07-01 | Sony Computer Entertainment America Llc | Discovery and analytics for episodic downloaded media |
US8249912B2 (en) * | 2008-02-20 | 2012-08-21 | Sebastian Elliot | Method for determining, correlating and examining the causal relationships between media program and commercial content with response rates to advertising and product placement |
US20090271228A1 (en) * | 2008-04-23 | 2009-10-29 | Microsoft Corporation | Construction of predictive user profiles for advertising |
US11263548B2 (en) | 2008-07-25 | 2022-03-01 | Liveperson, Inc. | Method and system for creating a predictive model for targeting web-page to a surfer |
US9104970B2 (en) | 2008-07-25 | 2015-08-11 | Liveperson, Inc. | Method and system for creating a predictive model for targeting web-page to a surfer |
US9396295B2 (en) | 2008-07-25 | 2016-07-19 | Liveperson, Inc. | Method and system for creating a predictive model for targeting web-page to a surfer |
US9396436B2 (en) | 2008-07-25 | 2016-07-19 | Liveperson, Inc. | Method and system for providing targeted content to a surfer |
US8762313B2 (en) | 2008-07-25 | 2014-06-24 | Liveperson, Inc. | Method and system for creating a predictive model for targeting web-page to a surfer |
US8260846B2 (en) * | 2008-07-25 | 2012-09-04 | Liveperson, Inc. | Method and system for providing targeted content to a surfer |
US8799200B2 (en) | 2008-07-25 | 2014-08-05 | Liveperson, Inc. | Method and system for creating a predictive model for targeting webpage to a surfer |
US20100023581A1 (en) * | 2008-07-25 | 2010-01-28 | Shlomo Lahav | Method and system for providing targeted content to a surfer |
US8954539B2 (en) * | 2008-07-25 | 2015-02-10 | Liveperson, Inc. | Method and system for providing targeted content to a surfer |
US9336487B2 (en) | 2008-07-25 | 2016-05-10 | Live Person, Inc. | Method and system for creating a predictive model for targeting webpage to a surfer |
US11763200B2 (en) | 2008-07-25 | 2023-09-19 | Liveperson, Inc. | Method and system for creating a predictive model for targeting web-page to a surfer |
US20130036202A1 (en) * | 2008-07-25 | 2013-02-07 | Shlomo Lahav | Method and system for providing targeted content to a surfer |
US9582579B2 (en) | 2008-08-04 | 2017-02-28 | Liveperson, Inc. | System and method for facilitating communication |
US9563707B2 (en) | 2008-08-04 | 2017-02-07 | Liveperson, Inc. | System and methods for searching and communication |
US9569537B2 (en) | 2008-08-04 | 2017-02-14 | Liveperson, Inc. | System and method for facilitating interactions |
US10657147B2 (en) | 2008-08-04 | 2020-05-19 | Liveperson, Inc. | System and methods for searching and communication |
US8805844B2 (en) | 2008-08-04 | 2014-08-12 | Liveperson, Inc. | Expert search |
US9558276B2 (en) | 2008-08-04 | 2017-01-31 | Liveperson, Inc. | Systems and methods for facilitating participation |
US10891299B2 (en) | 2008-08-04 | 2021-01-12 | Liveperson, Inc. | System and methods for searching and communication |
US11386106B2 (en) | 2008-08-04 | 2022-07-12 | Liveperson, Inc. | System and methods for searching and communication |
US20120226563A1 (en) * | 2008-10-02 | 2012-09-06 | Quan Lu | Segment optimization for targeted advertising |
US20100088177A1 (en) * | 2008-10-02 | 2010-04-08 | Turn Inc. | Segment optimization for targeted advertising |
US20100088152A1 (en) * | 2008-10-02 | 2010-04-08 | Dominic Bennett | Predicting user response to advertisements |
US20100088166A1 (en) * | 2008-10-06 | 2010-04-08 | Cellfire, Inc. | Electronic Coupons |
US9892417B2 (en) | 2008-10-29 | 2018-02-13 | Liveperson, Inc. | System and method for applying tracing tools for network locations |
US11562380B2 (en) | 2008-10-29 | 2023-01-24 | Liveperson, Inc. | System and method for applying tracing tools for network locations |
US10867307B2 (en) | 2008-10-29 | 2020-12-15 | Liveperson, Inc. | System and method for applying tracing tools for network locations |
US8271328B1 (en) * | 2008-12-17 | 2012-09-18 | Google Inc. | User-based advertisement positioning using markov models |
US20120060185A1 (en) * | 2009-04-28 | 2012-03-08 | Chakraborty Rakesh | Method and apparatus for planning a schedule of multimedia advertisements in a broadcasting channel |
US9256883B2 (en) * | 2009-04-28 | 2016-02-09 | Vubites India Private Limited | Method and apparatus for planning a schedule of multimedia advertisements in a broadcasting channel |
US20110040627A1 (en) * | 2009-08-11 | 2011-02-17 | Microsoft Corporation | Viral advertisements |
US8763090B2 (en) | 2009-08-11 | 2014-06-24 | Sony Computer Entertainment America Llc | Management of ancillary content delivery and presentation |
US10298703B2 (en) | 2009-08-11 | 2019-05-21 | Sony Interactive Entertainment America Llc | Management of ancillary content delivery and presentation |
US9474976B2 (en) | 2009-08-11 | 2016-10-25 | Sony Interactive Entertainment America Llc | Management of ancillary content delivery and presentation |
US20110040636A1 (en) * | 2009-08-14 | 2011-02-17 | Simmons Willard L | Learning system for the use of competing valuation models for real-time advertisement bidding |
US20110040635A1 (en) * | 2009-08-14 | 2011-02-17 | Willard Simmons | Dynamic targeting algorithms for real-time valuation of advertising placements |
US20110040613A1 (en) * | 2009-08-14 | 2011-02-17 | Simmons Willard L | Learning system for advertising bidding and valuation of third party data |
US20110040612A1 (en) * | 2009-08-14 | 2011-02-17 | Simmons Willard L | Machine learning for computing and targeting bids for the placement of advertisements |
US20110066497A1 (en) * | 2009-09-14 | 2011-03-17 | Choicestream, Inc. | Personalized advertising and recommendation |
US20110071901A1 (en) * | 2009-09-21 | 2011-03-24 | Alexander Fries | Online Advertising Methods and Systems and Revenue Sharing Methods and Systems Related to Same |
US20110153419A1 (en) * | 2009-12-21 | 2011-06-23 | Hall Iii Arlest Bryon | System and method for intelligent modeling for insurance marketing |
US8543445B2 (en) * | 2009-12-21 | 2013-09-24 | Hartford Fire Insurance Company | System and method for direct mailing insurance solicitations utilizing hierarchical bayesian inference for prospect selection |
US11615161B2 (en) | 2010-04-07 | 2023-03-28 | Liveperson, Inc. | System and method for dynamically enabling customized web content and applications |
US9767212B2 (en) | 2010-04-07 | 2017-09-19 | Liveperson, Inc. | System and method for dynamically enabling customized web content and applications |
US8898217B2 (en) | 2010-05-06 | 2014-11-25 | Apple Inc. | Content delivery based on user terminal events |
US8751305B2 (en) | 2010-05-24 | 2014-06-10 | 140 Proof, Inc. | Targeting users based on persona data |
US8504419B2 (en) | 2010-05-28 | 2013-08-06 | Apple Inc. | Network-based targeted content delivery based on queue adjustment factors calculated using the weighted combination of overall rank, context, and covariance scores for an invitational content item |
US20110153423A1 (en) * | 2010-06-21 | 2011-06-23 | Jon Elvekrog | Method and system for creating user based summaries for content distribution |
US8510658B2 (en) | 2010-08-11 | 2013-08-13 | Apple Inc. | Population segmentation |
US9183247B2 (en) | 2010-08-31 | 2015-11-10 | Apple Inc. | Selection and delivery of invitational content based on prediction of user interest |
US8983978B2 (en) | 2010-08-31 | 2015-03-17 | Apple Inc. | Location-intention context for content delivery |
US8510309B2 (en) | 2010-08-31 | 2013-08-13 | Apple Inc. | Selection and delivery of invitational content based on prediction of user interest |
US8640032B2 (en) | 2010-08-31 | 2014-01-28 | Apple Inc. | Selection and delivery of invitational content based on prediction of user intent |
US8918465B2 (en) | 2010-12-14 | 2014-12-23 | Liveperson, Inc. | Authentication of service requests initiated from a social networking site |
US11050687B2 (en) | 2010-12-14 | 2021-06-29 | Liveperson, Inc. | Authentication of service requests initiated from a social networking site |
US9350598B2 (en) | 2010-12-14 | 2016-05-24 | Liveperson, Inc. | Authentication of service requests using a communications initiation feature |
US11777877B2 (en) | 2010-12-14 | 2023-10-03 | Liveperson, Inc. | Authentication of service requests initiated from a social networking site |
US10038683B2 (en) | 2010-12-14 | 2018-07-31 | Liveperson, Inc. | Authentication of service requests using a communications initiation feature |
US10104020B2 (en) | 2010-12-14 | 2018-10-16 | Liveperson, Inc. | Authentication of service requests initiated from a social networking site |
US8943002B2 (en) | 2012-02-10 | 2015-01-27 | Liveperson, Inc. | Analytics driven engagement |
US11134038B2 (en) | 2012-03-06 | 2021-09-28 | Liveperson, Inc. | Occasionally-connected computing interface |
US8805941B2 (en) | 2012-03-06 | 2014-08-12 | Liveperson, Inc. | Occasionally-connected computing interface |
US10326719B2 (en) | 2012-03-06 | 2019-06-18 | Liveperson, Inc. | Occasionally-connected computing interface |
US9331969B2 (en) | 2012-03-06 | 2016-05-03 | Liveperson, Inc. | Occasionally-connected computing interface |
US11711329B2 (en) | 2012-03-06 | 2023-07-25 | Liveperson, Inc. | Occasionally-connected computing interface |
US11323428B2 (en) | 2012-04-18 | 2022-05-03 | Liveperson, Inc. | Authentication of service requests using a communications initiation feature |
US11689519B2 (en) | 2012-04-18 | 2023-06-27 | Liveperson, Inc. | Authentication of service requests using a communications initiation feature |
US10666633B2 (en) | 2012-04-18 | 2020-05-26 | Liveperson, Inc. | Authentication of service requests using a communications initiation feature |
US11868591B2 (en) | 2012-04-26 | 2024-01-09 | Liveperson, Inc. | Dynamic user interface customization |
US10795548B2 (en) | 2012-04-26 | 2020-10-06 | Liveperson, Inc. | Dynamic user interface customization |
US11269498B2 (en) | 2012-04-26 | 2022-03-08 | Liveperson, Inc. | Dynamic user interface customization |
US9563336B2 (en) | 2012-04-26 | 2017-02-07 | Liveperson, Inc. | Dynamic user interface customization |
US9672196B2 (en) | 2012-05-15 | 2017-06-06 | Liveperson, Inc. | Methods and systems for presenting specialized content using campaign metrics |
US11004119B2 (en) | 2012-05-15 | 2021-05-11 | Liveperson, Inc. | Methods and systems for presenting specialized content using campaign metrics |
US11687981B2 (en) | 2012-05-15 | 2023-06-27 | Liveperson, Inc. | Methods and systems for presenting specialized content using campaign metrics |
US9159083B1 (en) | 2012-06-18 | 2015-10-13 | Google Inc. | Content evaluation based on user's browsing history |
US10217132B1 (en) | 2012-06-18 | 2019-02-26 | Google Llc | Content evaluation based on users browsing history |
US9141504B2 (en) | 2012-06-28 | 2015-09-22 | Apple Inc. | Presenting status data received from multiple devices |
US20140089041A1 (en) * | 2012-09-27 | 2014-03-27 | Bank Of America Corporation | Two sigma intelligence |
US11386442B2 (en) | 2014-03-31 | 2022-07-12 | Liveperson, Inc. | Online behavioral predictor |
US12079829B2 (en) | 2014-03-31 | 2024-09-03 | Liveperson, Inc. | Online behavioral predictor |
US10755309B2 (en) * | 2014-06-26 | 2020-08-25 | Piksel, Inc. | Delivering content |
US11638195B2 (en) | 2015-06-02 | 2023-04-25 | Liveperson, Inc. | Dynamic communication routing based on consistency weighting and routing rules |
US10869253B2 (en) | 2015-06-02 | 2020-12-15 | Liveperson, Inc. | Dynamic communication routing based on consistency weighting and routing rules |
US10346871B2 (en) * | 2016-04-22 | 2019-07-09 | Facebook, Inc. | Automatic targeting of content by clustering based on user feedback data |
US10278065B2 (en) | 2016-08-14 | 2019-04-30 | Liveperson, Inc. | Systems and methods for real-time remote control of mobile applications |
US11558713B1 (en) | 2016-12-30 | 2023-01-17 | Amazon Technologies, Inc. | Contextual presence |
US10846745B1 (en) * | 2016-12-30 | 2020-11-24 | Amazon Technologies, Inc. | Contextual presence |
Also Published As
Publication number | Publication date |
---|---|
US20030229531A1 (en) | 2003-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7370002B2 (en) | Modifying advertisement scores based on advertisement response probabilities | |
US12265989B2 (en) | Preservation of scores of the quality of traffic to network sites across clients and over time | |
AU2013289036B2 (en) | Modifying targeting criteria for an advertising campaign based on advertising campaign budget | |
Danaher et al. | Factors affecting web site visit duration: A cross-domain analysis | |
US8156138B2 (en) | System and method for providing targeted content | |
US9183562B2 (en) | Method and system for determining touchpoint attribution | |
US8700463B2 (en) | Advertisement generation and optimization | |
US9836760B2 (en) | Representative user journeys for content sessions | |
US8572115B2 (en) | Identifying negative keywords associated with advertisements | |
US10198744B2 (en) | User-targeted advertising | |
US20170178199A1 (en) | Method and system for adaptively providing personalized marketing experiences to potential customers and users of a tax return preparation system | |
US20110258045A1 (en) | Inventory management | |
US20100138451A1 (en) | Techniques for facilitating on-line contextual analysis and advertising | |
US9031863B2 (en) | Contextual advertising with user features | |
US20170300939A1 (en) | Optimizing promotional offer mixes using predictive modeling | |
US20140156383A1 (en) | Ad-words optimization based on performance across multiple channels | |
CN102576436A (en) | Learning system for the use of competing valuation models for real-time advertisement bidding | |
US20090043597A1 (en) | System and method for matching objects using a cluster-dependent multi-armed bandit | |
US20180285748A1 (en) | Performance metric prediction for delivery of electronic media content items | |
Potwora et al. | Marketing strategies in e-commerce: personalised content, recommendations, and increased customer trust | |
US20180336589A1 (en) | Advertisment targeting criteria suggestions | |
US20140257966A1 (en) | Method , computer readable medium and system for determining weights for attributes and attribute values for a plurality of touchpoint encounters | |
US20140257972A1 (en) | Method, computer readable medium and system for determining true scores for a plurality of touchpoint encounters | |
US20190205901A1 (en) | Dynamic creation of content items for distribution in an online system by combining content components | |
US11366817B2 (en) | Intent based second pass ranker for ranking aggregates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MICROSOFT CORPORATION, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HECKERMAN, DAVID E.;LUO, MARTIN;SHANI, GUY;AND OTHERS;REEL/FRAME:012974/0792;SIGNING DATES FROM 20020522 TO 20020529 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: MICROSOFT TECHNOLOGY LICENSING, LLC, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICROSOFT CORPORATION;REEL/FRAME:034541/0477 Effective date: 20141014 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20200506 |